Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 68(10): 1561-1572, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31494742

RESUMEN

Preclinical and clinical studies have suggested that cancer treatment with antitumor antibodies induces a specific adaptive T cell response. A central role in this process has been attributed to CD4+ T cells, but the relevant T cell epitopes, mostly derived from non-mutated self-antigens, are largely unknown. In this study, we have characterized human CD20-derived epitopes restricted by HLA-DR1, HLA-DR3, HLA-DR4, and HLA-DR7, and investigated whether T cell responses directed against CD20-derived peptides can be elicited in human HLA-DR-transgenic mice and human samples. Based on in vitro binding assays to recombinant human MHC II molecules and on in vivo immunization assays in H-2 KO/HLA-A2+-DR1+ transgenic mice, we have identified 21 MHC II-restricted long peptides derived from intracellular, membrane, or extracellular domains of the human non-mutated CD20 protein that trigger in vitro IFN-γ production by PBMCs and splenocytes from healthy individuals and by PBMCs from follicular lymphoma patients. These CD20-derived MHC II-restricted peptides could serve as a therapeutic tool for improving and/or monitoring anti-CD20 T cell activity in patients treated with rituximab or other anti-CD20 antibodies.


Asunto(s)
Antígenos CD20/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfoma/tratamiento farmacológico , Animales , Femenino , Cadenas HLA-DRB1/inmunología , Humanos , Interferón gamma/biosíntesis , Linfoma/inmunología , Ratones , Rituximab/uso terapéutico
2.
Front Immunol ; 8: 950, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28855903

RESUMEN

Clinical responses to anti-tumor monoclonal antibody (mAb) treatment have been regarded for many years only as a consequence of the ability of mAbs to destroy tumor cells by innate immune effector mechanisms. More recently, it has also been shown that anti-tumor antibodies can induce a long-lasting anti-tumor adaptive immunity, likely responsible for durable clinical responses, a phenomenon that has been termed the vaccinal effect of antibodies. However, some of these anti-tumor antibodies are directed against molecules expressed both by tumor cells and normal immune cells, in particular lymphocytes, and, hence, can also strongly affect the host adaptive immunity. In addition to a delayed recovery of target cells, lymphocyte depleting-mAb treatments can have dramatic consequences on the adaptive immune cell network, its rebound, and its functional capacities. Thus, in this review, we will not only discuss the mAb-induced vaccinal effect that has emerged from experimental preclinical studies and clinical trials but also the multifaceted impact of lymphocytes-depleting therapeutic antibodies on the host adaptive immunity. We will also discuss some of the molecular and cellular mechanisms of action whereby therapeutic mAbs induce a long-term protective anti-tumor effect and the relationship between the mAb-induced vaccinal effect and the immune response against self-antigens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA