Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 5048, 2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36030264

RESUMEN

Tool based manufacturing processes like injection moulding allow fast and high-quality mass-market production, but for optical polymer components the production of the necessary tools is time-consuming and expensive. In this paper a process to fabricate metal-inserts for tool based manufacturing with smooth surfaces via a casting and replication process from fused silica templates is presented. Bronze, brass and cobalt-chromium could be successfully replicated from shaped fused silica replications achieving a surface roughnesses of Rq 8 nm and microstructures in the range of 5 µm. Injection moulding was successfully performed, using a commercially available injection moulding system, with thousands of replicas generated from the same tool. In addition, three-dimensional bodies in metal could be realised with 3D-Printing of fused silica casting moulds. This work thus represents an approach to high-quality moulding tools via a scalable facile and cost-effective route surpassing the currently employed cost-, labour- and equipment-intensive machining techniques.

2.
Adv Sci (Weinh) ; 9(31): e2204385, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36057994

RESUMEN

Transparent ceramics like magnesium aluminate spinel (MAS) are considered the next step in material evolution showing unmatched mechanical, chemical and physical resistance combined with high optical transparency. Unfortunately, transparent ceramics are notoriously difficult to shape, especially on the microscale. Therefore, a thermoplastic MAS nanocomposite is developed that can be shaped by polymer injection molding at high speed and precision. The nanocomposite is converted to dense MAS by debinding, pre-sintering, and hot isostatic pressing yielding transparent ceramics with high optical transmission up to 84 % and high mechanical strength. A transparent macroscopic MAS components with wall thicknesses up to 4 mm as well as microstructured components with single micrometer resolution are shown. This work makes transparent MAS ceramics accessible to modern high-throughput polymer processing techniques for fast and cost-efficient manufacturing of macroscopic and microstructured components enabling a plethora of potential applications from optics and photonics, medicine to scratch and break-resistant transparent windows for consumer electronics.


Asunto(s)
Cerámica , Nanocompuestos , Polímeros
3.
Adv Mater ; 30(22): e1707100, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29611238

RESUMEN

Fused silica glass is one of the most important high-performance materials for scientific research, industry, and society. However due to its high chemical and thermal resistance as well as high hardness, fused silica glass is notoriously difficult to structure. This work introduces Glassomer, a solid nanocomposite, which can be structured using polymer molding and subtractive technologies at submicrometer resolution. After polymer processing Glassomer is turned into optical grade fused silica glass during a final heat treatment. The resulting glass has the same optical transparency as commercial fused silica and a smooth surface with a roughness of a few nanometers. This work makes high-performance fused silica glass components accessible to high-throughput fabrication technologies and will enable numerous optical, photonic and medical applications in science and industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA