Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Soft Matter ; 14(42): 8475-8482, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30152833

RESUMEN

We study the viscoelastic response of amorphous polymers using theory and simulations. By accounting for internal stresses and considering instantaneous normal modes (INMs) within athermal non-affine theory, we make parameter-free predictions of the dynamic viscoelastic moduli obtained in coarse-grained simulations of polymer glasses at non-zero temperatures. The theoretical results show very good correspondence with rheology data collected from molecular dynamics simulations over five orders of magnitude in frequency, with some instabilities that accumulate in the low-frequency part on approach to the glass transition. These results provide evidence that the mechanical glass transition itself is continuous and thus represents a crossover rather than a true phase transition. The relatively sharp drop of the low-frequency storage modulus across the glass transition temperature can be explained mechanistically within the proposed theory: the proliferation of low-eigenfrequency vibrational excitations (boson peak and nearly-zero energy excitations) is directly responsible for the rapid growth of a negative non-affine contribution to the storage modulus.

2.
Soft Matter ; 13(36): 6079-6089, 2017 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-28785752

RESUMEN

The mechanical, thermal and vibrational properties of defective crystals are important in many different contexts, from metallurgy and solid-state physics to, more recently, soft matter and colloidal physics. Here we study two different models of disordered fcc crystal lattices, with randomly-removed bonds and with vacancies, respectively, within the framework of non-affine lattice dynamics. We find that both systems feature the same scaling of the shear modulus with the newly defined inversion-symmetry breaking (ISB) parameter, which shows that local inversion-symmetry breaking around defects is the universal root source of the non-affine softening of the shear modulus. This finding allows us to derive analytical relations for the non-affine (zero-frequency) shear modulus as a function of vacancy concentration in excellent agreement with numerical simulations. Nevertheless, due to the different microstructural disorder, the spatial fluctuations of the local ISB parameter are different in the vacancy and bond-depleted case. The vacancy fcc exhibits comparatively a more heterogenous microstructural disorder (due to the broader distribution of coordination number Z), which is reflected in a different scaling relation between boson peak frequency in the DOS and the average Z[combining macron]. These differences are less important at low vacancy concentrations, where the numerical DOS of the vacancy fcc can be well described theoretically by coherent-potential approximation, developed here for the bond-depleted fcc lattice in 3d.

3.
Phys Rev E ; 97(3-1): 032113, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29776035

RESUMEN

A sparse random block matrix model suggested by the Hessian matrix used in the study of elastic vibrational modes of amorphous solids is presented and analyzed. By evaluating some moments, benchmarked against numerics, differences in the eigenvalue spectrum of this model in different limits of space dimension d, and for arbitrary values of the lattice coordination number Z, are shown and discussed. As a function of these two parameters (and their ratio Z/d), the most studied models in random matrix theory (Erdos-Renyi graphs, effective medium, and replicas) can be reproduced in the various limits of block dimensionality d. Remarkably, the Marchenko-Pastur spectral density (which is recovered by replica calculations for the Laplacian matrix) is reproduced exactly in the limit of infinite size of the blocks, or d→∞, which clarifies the physical meaning of space dimension in these models. We feel that the approximate results for d=3 provided by our method may have many potential applications in the future, from the vibrational spectrum of glasses and elastic networks to wave localization, disordered conductors, random resistor networks, and random walks.

4.
Phys Rev E ; 95(2-1): 023001, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28297961

RESUMEN

Viscoelasticity has been described since the time of Maxwell as an interpolation of purely viscous and purely elastic response, but its microscopic atomic-level mechanism in solids has remained elusive. We studied three model disordered solids: a random lattice, the bond-depleted fcc lattice, and the fcc lattice with vacancies. Within the harmonic approximation for central-force lattices, we applied sum rules for viscoelastic response derived on the basis of nonaffine atomic motions. The latter motions are a direct result of local structural disorder, and in particular, of the lack of inversion symmetry in disordered lattices. By defining a suitable quantitative and general atomic-level measure of nonaffinity and inversion symmetry, we show that the viscoelastic responses of all three systems collapse onto a master curve upon normalizing by the overall strength of inversion-symmetry breaking in each system. Close to the isostatic point for central-force lattices, power-law creep G(t)∼t^{-1/2} emerges as a consequence of the interplay between soft vibrational modes and nonaffine dynamics, and various analytical scalings, supported by numerical calculations, are predicted by the theory.

5.
Phys Rev E ; 95(2-1): 022603, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28297893

RESUMEN

We compute the dielectric response of glasses starting from a microscopic system-bath Hamiltonian of the Zwanzig-Caldeira-Leggett type and using an ansatz from kinetic theory for the memory function in the resulting generalized Langevin equation. The resulting framework requires the knowledge of the vibrational density of states (DOS) as input, which we take from numerical evaluation of a marginally stable harmonic disordered lattice, featuring a strong boson peak (excess of soft modes over Debye ∼ω_{p}^{2} law). The dielectric function calculated based on this ansatz is compared with experimental data for the paradigmatic case of glycerol at T≲T_{g}. Good agreement is found for both the reactive (real) part of the response and for the α-relaxation peak in the imaginary part, with a significant improvement over earlier theoretical approaches. On the low-frequency side of the α peak, the fitting supports the presence of ∼ω_{p}^{4} modes at vanishing eigenfrequency as recently shown [E. Lerner, G. During, and E. Bouchbinder, Phys. Rev. Lett. 117, 035501 (2016)PRLTAO0031-900710.1103/PhysRevLett.117.035501]. α-wing asymmetry and stretched-exponential behavior are recovered by our framework, which shows that these features are, to a large extent, caused by the soft boson-peak modes in the DOS.

6.
Phys Rev E ; 96(3-1): 030501, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29346945

RESUMEN

We investigate the mechanical properties of amorphous polymers by means of coarse-grained simulations and nonaffine lattice dynamics theory. A small increase of polymer chain bending stiffness leads first to softening of the material, while hardening happens only upon further strengthening of the backbones. This nonmonotonic variation of the storage modulus G^{'} with bending stiffness is caused by a competition between additional resistance to deformation offered by stiffer backbones and decreased density of the material due to a necessary decrease in monomer-monomer coordination. This counterintuitive finding suggests that the strength of polymer glasses may in some circumstances be enhanced by softening the bending of constituent chains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA