Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38923138

RESUMEN

Analysis of salinity tolerance processes in wheat has focused on salt exclusion from shoots while root phenotypes have received limited attention. Here, we consider the varying phenotypic response of four bread wheat varieties that differ in their type and degree of salt tolerance and assess their molecular responses to salinity and changes in root cell wall lignification. These varieties were Westonia introgressed with Nax1 and Nax2 root sodium transporters (HKT1;4-A and HKT1;5-A) that reduce Na+ accumulation in leaves, as well as the 'tissue tolerant' Portuguese landrace Mocho de Espiga Branca that has a mutation in the homologous gene HKT1;5-D and has high Na+ concentration in leaves. These three varieties were compared with the relatively more salt-sensitive cultivar Gladius. Through the use of root histochemical analysis, ion concentrations, as well as differential proteomics and targeted metabolomics, we provide an integrated view of the wheat root response to salinity. We show different metabolic re-arrangements in energy conversion, primary metabolic machinery and phenylpropanoid pathway leading to monolignol production in a genotype and genotype by treatment-dependent manner that alters the extent and localisation of root lignification which correlated with an improved capacity of wheat roots to cope better under salinity stress.

2.
Plant Physiol ; 194(4): 2631-2647, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38206203

RESUMEN

Spontaneous mutations are rare in mitochondria and the lack of mitochondrial transformation methods has hindered genetic analyses. We show that a custom-designed RNA-binding pentatricopeptide repeat (PPR) protein binds and specifically induces cleavage of ATP synthase subunit1 (atp1) mRNA in mitochondria, significantly decreasing the abundance of the Atp1 protein and the assembled F1Fo ATP synthase in Arabidopsis (Arabidopsis thaliana). The transformed plants are characterized by delayed vegetative growth and reduced fertility. Five-fold depletion of Atp1 level was accompanied by a decrease in abundance of other ATP synthase subunits and lowered ATP synthesis rate of isolated mitochondria, but no change to mitochondrial electron transport chain complexes, adenylates, or energy charge in planta. Transcripts for amino acid transport and a variety of stress response processes were differentially expressed in lines containing the PPR protein, indicating changes to achieve cellular homeostasis when ATP synthase was highly depleted. Leaves of ATP synthase-depleted lines showed higher respiratory rates and elevated steady-state levels of numerous amino acids, most notably of the serine family. The results show the value of using custom-designed PPR proteins to influence the expression of specific mitochondrial transcripts to carry out reverse genetic studies on mitochondrial gene functions and the consequences of ATP synthase depletion on cellular functions in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
3.
Plant Cell ; 34(10): 3936-3960, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35766863

RESUMEN

Identification of autophagic protein cargo in plants in autophagy-related genes (ATG) mutants is complicated by changes in protein synthesis and protein degradation. To detect autophagic cargo, we measured protein degradation rate in shoots and roots of Arabidopsis (Arabidopsis thaliana) atg5 and atg11 mutants. These data show that less than a quarter of proteins changing in abundance are probable cargo and revealed roles of ATG11 and ATG5 in degradation of specific glycolytic enzymes and of other cytosol, chloroplast, and ER-resident proteins, and a specialized role for ATG11 in degradation of proteins from mitochondria and chloroplasts. Protein localization in transformed protoplasts and degradation assays in the presence of inhibitors confirm a role for autophagy in degrading glycolytic enzymes. Autophagy induction by phosphate (Pi) limitation changed metabolic profiles and the protein synthesis and degradation rates of atg5 and atg11 plants. A general decrease in the abundance of amino acids and increase in secondary metabolites in autophagy mutants was consistent with altered catabolism and changes in energy conversion caused by reduced degradation rate of specific proteins. Combining measures of changes in protein abundance and degradation rates, we also identify ATG11 and ATG5-associated protein cargo of low Pi-induced autophagy in chloroplasts and ER-resident proteins involved in secondary metabolism.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autofagia/genética , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Cloroplastos/metabolismo , Citosol/metabolismo , Fosfatos/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(20): e2121362119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35549553

RESUMEN

Photoinhibitory high light stress in Arabidopsis leads to increases in markers of protein degradation and transcriptional up-regulation of proteases and proteolytic machinery, but proteostasis is largely maintained. We find significant increases in the in vivo degradation rate for specific molecular chaperones, nitrate reductase, glyceraldehyde-3 phosphate dehydrogenase, and phosphoglycerate kinase and other plastid, mitochondrial, peroxisomal, and cytosolic enzymes involved in redox shuttles. Coupled analysis of protein degradation rates, mRNA levels, and protein abundance reveal that 57% of the nuclear-encoded enzymes with higher degradation rates also had high light­induced transcriptional responses to maintain proteostasis. In contrast, plastid-encoded proteins with enhanced degradation rates showed decreased transcript abundances and must maintain protein abundance by other processes. This analysis reveals a light-induced transcriptional program for nuclear-encoded genes, beyond the regulation of the photosystem II (PSII) D1 subunit and the function of PSII, to replace key protein degradation targets in plants and ensure proteostasis under high light stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteolisis , Proteostasis , Transcripción Genética , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Luz , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Proteolisis/efectos de la radiación , Proteostasis/genética , Proteostasis/efectos de la radiación , Transcripción Genética/efectos de la radiación
5.
Plant Physiol ; 191(4): 2133-2149, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36573332

RESUMEN

Plant respiration is a foundational biological process with the potential to be optimized to improve crop yield. To understand and manipulate the outputs of respiration, the inputs of respiration-respiratory substrates-need to be probed in detail. Mitochondria house substrate catabolic pathways and respiratory machinery, so transport into and out of these organelles plays an important role in committing substrates to respiration. The large number of mitochondrial carriers and catabolic pathways that remain unidentified hinder this process and lead to confusion about the identity of direct and indirect respiratory substrates in plants. The sources and usage of respiratory substrates vary and are increasing found to be highly regulated based on cellular processes and environmental factors. This review covers the use of direct respiratory substrates following transport through mitochondrial carriers and catabolism under normal and stressed conditions. We suggest the introduction of enzymes not currently found in plant mitochondria to enable serine and acetate to be direct respiratory substrates in plants. We also compare respiratory substrates by assessing energetic yields, availability in cells, and their full or partial oxidation during cell catabolism. This information can assist in decisions to use synthetic biology approaches to alter the range of respiratory substrates in plants. As a result, respiration could be optimized by introducing, improving, or controlling specific mitochondrial transporters and mitochondrial catabolic pathways.


Asunto(s)
Respiración de la Célula , Mitocondrias , Mitocondrias/metabolismo , Oxidación-Reducción , Metabolismo Energético , Plantas/metabolismo , Respiración
6.
Plant Physiol ; 192(4): 2958-2970, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37128995

RESUMEN

Ala is a central metabolite in leaf cells whose abundance is related to pyruvate (Pyr) metabolism and nocturnal respiration rates. Exposure of Arabidopsis (Arabidopsis thaliana) leaf disks to certain exogenous amino acids including Ala led to substantial increases in nighttime respiration rates as well as increases in alternative oxidase (AOX) 1d transcript and protein levels. During Ala treatment, AOX1d accumulation, but not AOX1a accumulation, was dependent upon the catabolism of Ala. Complete loss of AOX expression in aox1a aox1d leaf disks did not significantly affect oxygen consumption rates (OCR) under Ala treatment, indicating that AOX capacity per se was not essential for respiratory stimulation by Ala. Rather, Ala treatments caused induction of select antioxidant mechanisms in leaf disks, including a large increase of the ascorbate pool, which was substantially more oxidized in aox1a aox1d leaf disks. Furthermore, we observed differences in the accumulation of a sequence of TCA cycle intermediates from Pyr to 2-oxoglutarate (2-OG) in wild type (WT) upon Ala treatment that did not occur in aox1a aox1d leaf disks. The results indicate that AOX induction during enhanced Ala catabolism in leaves mediates mitochondrial redox status, allowing greater metabolic flexibility in mitochondrial organic acid metabolism.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxidación-Reducción , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
7.
Plant Cell Environ ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38988259

RESUMEN

Loss of Lon1 led to stunted plant growth and accumulation of nuclear-encoded mitochondrial proteins including Lon1 substrates. However, an in-depth label-free proteomics quantification of mitochondrial proteins in lon1 revealed that the majority of mitochondrial-encoded proteins decreased in abundance. Additionally, we found that lon1 mutants contained protein aggregates in the mitochondrial that were enriched in metabolic enzymes, ribosomal subunits and PPR-containing proteins of the translation apparatus. These mutants exhibited reduced general mitochondrial translation as well as deficiencies in RNA splicing and editing. These findings support the role of Lon1 in maintaining a functional translational apparatus for mitochondrial-encoded gene translation. Transcriptome analysis of lon1 revealed a mitochondrial unfolded protein response reminiscent of the mitochondrial retrograde signalling dependent on the transcription factor ANAC017. Notably, lon1 mutants exhibited transiently elevated ethylene production, and the shortened hypocotyl observed in lon1 mutants during skotomorphogenesis was partially alleviated by ethylene inhibitors. Furthermore, the short root phenotype was partially ameliorated by introducing a mutation in the ethylene receptor ETR1. Interestingly, the upregulation of only a select few target genes was linked to ETR1-mediated ethylene signalling. Together this provides multiple steps in the link between loss of Lon1 and signalling responses to restore mitochondrial protein homoeostasis in plants.

8.
Plant Cell ; 33(8): 2776-2793, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34137858

RESUMEN

Malate oxidation by plant mitochondria enables the generation of both oxaloacetate and pyruvate for tricarboxylic acid (TCA) cycle function, potentially eliminating the need for pyruvate transport into mitochondria in plants. Here, we show that the absence of the mitochondrial pyruvate carrier 1 (MPC1) causes the co-commitment loss of its putative orthologs, MPC3/MPC4, and eliminates pyruvate transport into Arabidopsis thaliana mitochondria, proving it is essential for MPC complex function. While the loss of either MPC or mitochondrial pyruvate-generating NAD-malic enzyme (NAD-ME) did not cause vegetative phenotypes, the lack of both reduced plant growth and caused an increase in cellular pyruvate levels, indicating a block in respiratory metabolism, and elevated the levels of branched-chain amino acids at night, a sign of alterative substrate provision for respiration. 13C-pyruvate feeding of leaves lacking MPC showed metabolic homeostasis was largely maintained except for alanine and glutamate, indicating that transamination contributes to the restoration of the metabolic network to an operating equilibrium by delivering pyruvate independently of MPC into the matrix. Inhibition of alanine aminotransferases when MPC1 is absent resulted in extremely retarded phenotypes in Arabidopsis, suggesting all pyruvate-supplying enzymes work synergistically to support the TCA cycle for sustained plant growth.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/metabolismo , Acrilatos/farmacología , Alanina/metabolismo , Alanina Transaminasa/antagonistas & inhibidores , Proteínas de Transporte de Anión/genética , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Transporte Biológico/efectos de los fármacos , Cicloserina/farmacología , Inhibidores Enzimáticos/farmacología , Malato Deshidrogenasa/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/genética , Transportadores de Ácidos Monocarboxílicos/genética , Complejos Multiproteicos/metabolismo , NAD/metabolismo , Plantas Modificadas Genéticamente
9.
Plant Cell ; 33(12): 3700-3720, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34498076

RESUMEN

Malate and citrate underpin the characteristic flexibility of central plant metabolism by linking mitochondrial respiratory metabolism with cytosolic biosynthetic pathways. However, the identity of mitochondrial carrier proteins that influence both processes has remained elusive. Here we show by a systems approach that DICARBOXYLATE CARRIER 2 (DIC2) facilitates mitochondrial malate-citrate exchange in vivo in Arabidopsis thaliana. DIC2 knockout (dic2-1) retards growth of vegetative tissues. In vitro and in organello analyses demonstrate that DIC2 preferentially imports malate against citrate export, which is consistent with altered malate and citrate utilization in response to prolonged darkness of dic2-1 plants or a sudden shift to darkness of dic2-1 leaves. Furthermore, isotopic glucose tracing reveals a reduced flux towards citrate in dic2-1, which results in a metabolic diversion towards amino acid synthesis. These observations reveal the physiological function of DIC2 in mediating the flow of malate and citrate between the mitochondrial matrix and other cell compartments.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Ácido Cítrico/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Malatos/metabolismo , Hojas de la Planta/metabolismo , Ácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismo , Mitocondrias/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753504

RESUMEN

Metabolic engineering uses enzymes as parts to build biosystems for specified tasks. Although a part's working life and failure modes are key engineering performance indicators, this is not yet so in metabolic engineering because it is not known how long enzymes remain functional in vivo or whether cumulative deterioration (wear-out), sudden random failure, or other causes drive replacement. Consequently, enzymes cannot be engineered to extend life and cut the high energy costs of replacement. Guided by catalyst engineering, we adopted catalytic cycles until replacement (CCR) as a metric for enzyme functional life span in vivo. CCR is the number of catalytic cycles that an enzyme mediates in vivo before failure or replacement, i.e., metabolic flux rate/protein turnover rate. We used estimated fluxes and measured protein turnover rates to calculate CCRs for ∼100-200 enzymes each from Lactococcus lactis, yeast, and Arabidopsis CCRs in these organisms had similar ranges (<103 to >107) but different median values (3-4 × 104 in L. lactis and yeast versus 4 × 105 in Arabidopsis). In all organisms, enzymes whose substrates, products, or mechanisms can attack reactive amino acid residues had significantly lower median CCR values than other enzymes. Taken with literature on mechanism-based inactivation, the latter finding supports the proposal that 1) random active-site damage by reaction chemistry is an important cause of enzyme failure, and 2) reactive noncatalytic residues in the active-site region are likely contributors to damage susceptibility. Enzyme engineering to raise CCRs and lower replacement costs may thus be both beneficial and feasible.


Asunto(s)
Arabidopsis/enzimología , Biocatálisis , Enzimas/química , Lactococcus lactis/enzimología , Ingeniería Metabólica , Saccharomyces cerevisiae/enzimología
11.
Plant J ; 109(4): 745-763, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34997626

RESUMEN

Plants have a diurnal separation of metabolic fluxes and a need for differential maintenance of protein machinery in the day and night. To directly assess the output of the translation process and to estimate the ATP investment involved, the individual rates of protein synthesis and degradation of hundreds of different proteins need to be measured simultaneously. We quantified protein synthesis and degradation through pulse labelling with heavy hydrogen in Arabidopsis thaliana rosettes to allow such an assessment of ATP investment in leaf proteome homeostasis on a gene-by-gene basis. Light-harvesting complex proteins were synthesised and degraded much faster in the day (approximately 10:1), while carbon metabolism and vesicle trafficking components were translated at similar rates day or night. Few leaf proteins changed in abundance between the day and the night despite reduced protein synthesis rates at night, indicating that protein degradation rates are tightly coordinated. The data reveal how the pausing of photosystem synthesis and degradation at night allows the redirection of a decreased energy budget to a selective night-time maintenance schedule.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Marcaje Isotópico , Redes y Vías Metabólicas , Biosíntesis de Proteínas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Proteolisis
12.
Plant J ; 110(2): 499-512, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35080330

RESUMEN

Succinate dehydrogenase (SDH, complex II), which plays an essential role in mitochondrial respiration and tricarboxylic acid metabolism, requires the assembly of eight nuclear-encoded subunits and the insertion of various cofactors. Here, we report on the characterization of an Arabidopsis thaliana leucine-tyrosine-arginine (LYR) protein family member SDHAF1, (At2g39725) is a factor required for SDH activity. SDHAF1 is located in mitochondria and can fully complement the yeast SDHAF1 deletion strain. Knockdown of SDHAF1 using RNA interference resulted in a decrease in seedling hypocotyl elongation and reduced SDH activity. Proteomic analyses revealed a decreased abundance of various SDH subunits and assembly factors. Protein interaction assays revealed that SDHAF1 can interact exclusively with the Fe-S cluster-containing subunit SDH2 and HSCB, a cochaperone involved in Fe-S cluster complex recruitment. Therefore, we propose that in Arabidopsis, SDHAF1 plays a role in the biogenesis of SDH2 to form the functional complex II, which is essential for mitochondrial respiration and metabolism.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteómica , Saccharomyces cerevisiae/metabolismo , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo
13.
New Phytol ; 237(1): 60-77, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36251512

RESUMEN

The rate with which crop yields per hectare increase each year is plateauing at the same time that human population growth and other factors increase food demand. Increasing yield potential ( Y p ) of crops is vital to address these challenges. In this review, we explore a component of Y p that has yet to be optimised - that being improvements in the efficiency with which light energy is converted into biomass ( ε c ) via modifications to CO2 fixed per unit quantum of light (α), efficiency of respiratory ATP production ( ε prod ) and efficiency of ATP use ( ε use ). For α, targets include changes in photoprotective machinery, ribulose bisphosphate carboxylase/oxygenase kinetics and photorespiratory pathways. There is also potential for ε prod to be increased via targeted changes to the expression of the alternative oxidase and mitochondrial uncoupling pathways. Similarly, there are possibilities to improve ε use via changes to the ATP costs of phloem loading, nutrient uptake, futile cycles and/or protein/membrane turnover. Recently developed high-throughput measurements of respiration can serve as a proxy for the cumulative energy cost of these processes. There are thus exciting opportunities to use our growing knowledge of factors influencing the efficiency of photosynthesis and respiration to create a step-change in yield potential of globally important crops.


Asunto(s)
Dióxido de Carbono , Productos Agrícolas , Citocromo P-450 CYP2B1 , Adenosina Trifosfato/metabolismo , Dióxido de Carbono/metabolismo , Productos Agrícolas/fisiología , Citocromo P-450 CYP2B1/metabolismo , Fotosíntesis , Ribulosa-Bifosfato Carboxilasa/metabolismo
14.
Plant Physiol ; 188(3): 1521-1536, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34919733

RESUMEN

Proline (Pro) catabolism and reactive oxygen species production have been linked in mammals and Caenorhabditis elegans, while increases in leaf respiration rate follow Pro exposure in plants. Here, we investigated how alternative oxidases (AOXs) of the mitochondrial electron transport chain accommodate the large, atypical flux resulting from Pro catabolism and limit oxidative stress during Pro breakdown in mature Arabidopsis (Arabidopsis thaliana) leaves. Following Pro treatment, AOX1a and AOX1d accumulate at transcript and protein levels, with AOX1d approaching the level of the typically dominant AOX1a isoform. We therefore sought to determine the function of both AOX isoforms under Pro respiring conditions. Oxygen consumption rate measurements in aox1a and aox1d leaves suggested these AOXs can functionally compensate for each other to establish enhanced AOX catalytic capacity in response to Pro. Generation of aox1a.aox1d lines showed complete loss of AOX proteins and activity upon Pro treatment, yet full respiratory induction in response to Pro remained possible via the cytochrome pathway. However, aox1a.aox1d leaves displayed symptoms of elevated oxidative stress and suffered increased oxidative damage during Pro metabolism compared to the wild-type (WT) or the single mutants. During recovery from salt stress, when relatively high rates of Pro catabolism occur naturally, photosynthetic rates in aox1a.aox1d recovered slower than in the WT or the single aox lines, showing that both AOX1a and AOX1d are beneficial for cellular metabolism during Pro drawdown following osmotic stress. This work provides physiological evidence of a beneficial role for AOX1a but also the less studied AOX1d isoform in allowing safe catabolism of alternative respiratory substrates like Pro.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Estrés Oxidativo/efectos de los fármacos , Oxidorreductasas/metabolismo , Prolina/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Estrés Salino/efectos de los fármacos , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genotipo , Mitocondrias/metabolismo , Mutación , Oxidorreductasas/genética , Variantes Farmacogenómicas , Estrés Salino/genética
15.
J Exp Bot ; 74(15): 4308-4323, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37220077

RESUMEN

Abiotic stresses such as drought and heat continue to impact crop production in a warming world. This review distinguishes seven inherent capacities that enable plants to respond to abiotic stresses and continue growing, although at a reduced rate, to achieve a productive yield. These are the capacities to selectively take up essential resources, store them and supply them to different plant parts, generate the energy required for cellular functions, conduct repairs to maintain plant tissues, communicate between plant parts, manage existing structural assets in the face of changed circumstances, and shape-shift through development to be efficient in different environments. By illustration, we show how all seven plant capacities are important for reproductive success of major crop species during drought, salinity, temperature extremes, flooding, and nutrient stress. Confusion about the term 'oxidative stress' is explained. This allows us to focus on the strategies that enhance plant adaptation by identifying key responses that can be targets for plant breeding.


Asunto(s)
Fitomejoramiento , Estrés Fisiológico , Estrés Fisiológico/fisiología , Plantas/genética , Adaptación Fisiológica , Estrés Oxidativo
16.
Insect Mol Biol ; 32(6): 658-675, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37477164

RESUMEN

Honey bee nutritional health depends on nectar and pollen, which provide the main source of carbohydrates, proteins and lipids to individual bees. During malnutrition, insect metabolism accesses fat body reserves. However, this process in bees and its repercussions at the colony level are poorly understood. Using untargeted lipidomics and gene expression analysis, we examined the effects of different feeding treatments (starvation, sugar feeding and sugar + pollen feeding) on bees and correlated them with colony health indicators. We found that nutritional stress led to an increase in unsaturated triacylglycerols and diacylglycerols, as well as a decrease in free fatty acids in the bee fat body. Here, we hypothesise that stored lipids are made available through a process where unsaturations change lipid's structure. Increased gene expression of three lipid desaturases in response to malnutrition supports this hypothesis, as these desaturases may be involved in releasing fatty acyl chains for lipolysis. Although nutritional stress was evident in starving and sugar-fed bees at the colony and physiological level, only starved colonies presented long-term effects in honey production.


La salud nutricional de la abeja melífera depende del consumo de néctar y polen, que proporcionan la principal fuente de carbohidratos, proteínas y lípidos. En un estado de desnutrición, el metabolismo de los insectos accede a las reservas del cuerpo graso. Sin embargo, en la abeja melífera, este proceso y sus repercusiones a nivel de la colonia, no se han comprendido con claridad. Utilizando lipidómica global y análisis de expresión genética, examinamos los efectos de diferentes tratamientos alimenticios en las abejas (inanición, únicamente azúcar y azúcar + polen) y los correlacionamos con indicadores de salud de la colonia. Encontramos un aumento en triacilgliceroles y diacilgliceroles insaturados y una disminución en los ácidos grasos libres en el cuerpo graso de abejas desnutridas. Hipotetizamos que estas insaturaciones en los lípidos modifican su estructura, tornándolos accesibles. Respaldamos esta hipótesis con la elevada expresión genética observada en tres desaturasas de lípidos durante desnutrición. Estas desaturasas podrían estar involucradas en la liberación de cadenas de ácidos grasos para la lipólisis. El estrés nutricional fue evidente tanto en abejas y colonias en estado de inanición y alimentadas con azúcar. Sin embargo, únicamente las colonias en estado de inanición presentaron efectos negativos a largo plazo en la producción de miel.


Asunto(s)
Lipidómica , Desnutrición , Abejas , Animales , Azúcares , Ácido Graso Desaturasas , Lípidos
17.
Plant Cell ; 32(3): 666-682, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31888967

RESUMEN

Respiration rate measurements provide an important readout of energy expenditure and mitochondrial activity in plant cells during the night. As plants inhabit a changing environment, regulatory mechanisms must ensure that respiratory metabolism rapidly and effectively adjusts to the metabolic and environmental conditions of the cell. Using a high-throughput approach, we have directly identified specific metabolites that exert transcriptional, translational, and posttranslational control over the nighttime O2 consumption rate (RN) in mature leaves of Arabidopsis (Arabidopsis thaliana). Multi-hour RN measurements following leaf disc exposure to a wide array of primary carbon metabolites (carbohydrates, amino acids, and organic acids) identified phosphoenolpyruvate (PEP), Pro, and Ala as the most potent stimulators of plant leaf RN Using metabolite combinations, we discovered metabolite-metabolite regulatory interactions controlling RN Many amino acids, as well as Glc analogs, were found to potently inhibit the RN stimulation by Pro and Ala but not PEP. The inhibitory effects of amino acids on Pro- and Ala-stimulated RN were mitigated by inhibition of the Target of Rapamycin (TOR) kinase signaling pathway. Supporting the involvement of TOR, these inhibitory amino acids were also shown to be activators of TOR kinase. This work provides direct evidence that the TOR signaling pathway in plants responds to amino acid levels by eliciting regulatory effects on respiratory energy metabolism at night, uniting a hallmark mechanism of TOR regulation across eukaryotes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Metaboloma , Fosfatidilinositol 3-Quinasas/metabolismo , Alanina/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/antagonistas & inhibidores , Respiración de la Célula/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Modelos Biológicos , Fosfoenolpiruvato/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Prolina/farmacología , Complejo Piruvato Deshidrogenasa/metabolismo , Factores de Tiempo
18.
Crit Rev Food Sci Nutr ; 63(27): 8616-8638, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35380479

RESUMEN

Sulfur is essential for the health of plants and is an indispensable dietary component for human health and disease prevention. Its incorporation into our food supply is heavily reliant upon the uptake of sulfur into plant tissue and our subsequent intake. Dietary requirements for sulfur are largely calculated based upon requirements for the sulfur-containing amino acids (SAA), cysteine and methionine, to meet the demands for synthesis of proteins, enzymes, co-enzymes, vitamins, and hormones. SAA are found in abundance in animal sources and are relatively low in plants. However, some plants, particularly cruciferous and allium vegetables, produce many protective sulfur-containing secondary metabolites, such as glucosinolates and cysteine sulfoxides. The variety and quantity of these sulfur-containing metabolites are extensive and their effects on human health are wide-reaching. Many benefits appear to be related to sulfur's role in redox biochemistry, protecting against uncontrolled oxidative stress and inflammation; features consistent within cardiometabolic dysfunction and many chronic metabolic diseases of aging. This narrative explores the origins and importance of sulfur, its incorporation into our food supply and dietary sources. It also explores the overarching potential of sulfur for human health, particularly around the amelioration of oxidative stress and chronic inflammation, and subsequent chronic disease prevention.


Asunto(s)
Cisteína , Compuestos de Azufre , Animales , Humanos , Compuestos de Azufre/metabolismo , Cisteína/metabolismo , Plantas/metabolismo , Azufre/metabolismo , Inflamación
19.
Cell ; 133(3): 523-36, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18423832

RESUMEN

Deciphering the multiple layers of epigenetic regulation that control transcription is critical to understanding how plants develop and respond to their environment. Using sequencing-by-synthesis technology we directly sequenced the cytosine methylome (methylC-seq), transcriptome (mRNA-seq), and small RNA transcriptome (smRNA-seq) to generate highly integrated epigenome maps for wild-type Arabidopsis thaliana and mutants defective in DNA methyltransferase or demethylase activity. At single-base resolution we discovered extensive, previously undetected DNA methylation, identified the context and level of methylation at each site, and observed local sequence effects upon methylation state. Deep sequencing of smRNAs revealed a direct relationship between the location of smRNAs and DNA methylation, perturbation of smRNA biogenesis upon loss of CpG DNA methylation, and a tendency for smRNAs to direct strand-specific DNA methylation in regions of RNA-DNA homology. Finally, strand-specific mRNA-seq revealed altered transcript abundance of hundreds of genes, transposons, and unannotated intergenic transcripts upon modification of the DNA methylation state.


Asunto(s)
Arabidopsis/genética , Metilación de ADN , Epigénesis Genética , Genoma de Planta , Islas de CpG , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Perfilación de la Expresión Génica , Mutación , ARN de Planta/metabolismo , ARN no Traducido/metabolismo , Análisis de Secuencia de ADN/métodos
20.
Mol Cell Proteomics ; 20: 100097, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34000434

RESUMEN

Introgression of a high-molecular-weight glutenin subunit (HMW-GS) allele, 1Ay21∗, into commercial wheat cultivars increased overall grain protein content and bread-making quality, but the role of proteins beyond this HMW-GS itself was unknown. In addition to increased abundance of 1Ay HMW-GS, 115 differentially accumulated proteins (DAPs) were discovered between three cultivars and corresponding introgressed near-isogenic lines. Functional category analysis showed that the DAPs were predominantly other storage proteins and proteins involved in protein synthesis, protein folding, protein degradation, stress response, and grain development. Nearly half the genes encoding the DAPs showed strong coexpression patterns during grain development. Promoters of these genes are enriched in elements associated with transcription initiation and light response, indicating a potential connection between these cis-elements and grain protein accumulation. A model of how this HMW-GS enhances the abundance of machinery for protein synthesis and maturation during grain filling is proposed. This analysis not only provides insights into how introgression of the 1Ay21∗ improves grain protein content but also directs selection of protein candidates for future wheat quality breeding programs.


Asunto(s)
Grano Comestible/química , Glútenes/genética , Proteínas de Plantas/genética , Proteoma , Triticum , Alelos , Pliegue de Proteína , Estabilidad Proteica , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA