Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Pharmacol ; 86(1): 96-105, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24755247

RESUMEN

A high-throughput screening campaign was conducted to interrogate a 380,000+ small-molecule library for novel D2 dopamine receptor modulators using a calcium mobilization assay. Active agonist compounds from the primary screen were examined for orthogonal D2 dopamine receptor signaling activities including cAMP modulation and ß-arrestin recruitment. Although the majority of the subsequently confirmed hits activated all signaling pathways tested, several compounds showed a diminished ability to stimulate ß-arrestin recruitment. One such compound (MLS1547; 5-chloro-7-[(4-pyridin-2-ylpiperazin-1-yl)methyl]quinolin-8-ol) is a highly efficacious agonist at D2 receptor-mediated G protein-linked signaling, but does not recruit ß-arrestin as demonstrated using two different assays. This compound does, however, antagonize dopamine-stimulated ß-arrestin recruitment to the D2 receptor. In an effort to investigate the chemical scaffold of MLS1547 further, we characterized a set of 24 analogs of MLS1547 with respect to their ability to inhibit cAMP accumulation or stimulate ß-arrestin recruitment. A number of the analogs were similar to MLS1547 in that they displayed agonist activity for inhibiting cAMP accumulation, but did not stimulate ß-arrestin recruitment (i.e., they were highly biased). In contrast, other analogs displayed various degrees of G protein signaling bias. These results provided the basis to use pharmacophore modeling and molecular docking analyses to build a preliminary structure-activity relationship of the functionally selective properties of this series of compounds. In summary, we have identified and characterized a novel G protein-biased agonist of the D2 dopamine receptor and identified structural features that may contribute to its biased signaling properties.


Asunto(s)
Arrestinas/antagonistas & inhibidores , Proteínas de Unión al GTP/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Arrestinas/metabolismo , Células CHO , Línea Celular , Cricetulus , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Unión Proteica/fisiología , Transducción de Señal/fisiología , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , beta-Arrestinas
2.
Eur Neuropsychopharmacol ; 25(9): 1448-61, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25583363

RESUMEN

The D3 dopamine receptor represents an important target in drug addiction in that reducing receptor activity may attenuate the self-administration of drugs and/or disrupt drug or cue-induced relapse. Medicinal chemistry efforts have led to the development of D3 preferring antagonists and partial agonists that are >100-fold selective vs. the closely related D2 receptor, as best exemplified by extended-length 4-phenylpiperazine derivatives. Based on the D3 receptor crystal structure, these molecules are known to dock to two sites on the receptor where the 4-phenylpiperazine moiety binds to the orthosteric site and an extended aryl amide moiety docks to a secondary binding pocket. The bivalent nature of the receptor binding of these compounds is believed to contribute to their D3 selectivity. In this study, we examined if such compounds might also be "bitopic" such that their aryl amide moieties act as allosteric modulators to further enhance the affinities of the full-length molecules for the receptor. First, we deconstructed several extended-length D3-selective ligands into fragments, termed "synthons", representing either orthosteric or secondary aryl amide pharmacophores and investigated their effects on D3 receptor binding and function. The orthosteric synthons were found to inhibit radioligand binding and to antagonize dopamine activation of the D3 receptor, albeit with lower affinities than the full-length compounds. Notably, the aryl amide-based synthons had no effect on the affinities or potencies of the orthosteric synthons, nor did they have any effect on receptor activation by dopamine. Additionally, pharmacological investigation of the full-length D3-selective antagonists revealed that these compounds interacted with the D3 receptor in a purely competitive manner. Our data further support that the 4-phenylpiperazine D3-selective antagonists are bivalent and that their enhanced affinity for the D3 receptor is due to binding at both the orthosteric site as well as a secondary binding pocket. Importantly, however, their interactions at the secondary site do not allosterically modulate their binding to the orthosteric site.


Asunto(s)
Antagonistas de Dopamina/metabolismo , Antagonistas de Dopamina/farmacología , Receptores de Dopamina D3/antagonistas & inhibidores , Regulación Alostérica , Animales , Arrestinas/metabolismo , Unión Competitiva , Células CHO , Cricetulus , Antagonistas de Dopamina/química , Evaluación Preclínica de Medicamentos , Humanos , Estructura Molecular , Ensayo de Unión Radioligante , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo , beta-Arrestinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA