RESUMEN
Photoelectrochemical fuel generation is a promising route to sustainable liquid fuels produced from water and captured carbon dioxide with sunlight as the energy input. Development of these technologies requires photoelectrode materials that are both photocatalytically active and operationally stable in harsh oxidative and/or reductive electrochemical environments. Such photocatalysts can be discovered based on co-design principles, wherein design for stability is based on the propensity for the photocatalyst to self-passivate under operating conditions and design for photoactivity is based on the ability to integrate the photocatalyst with established semiconductor substrates. Here, we report on the synthesis and characterization of zinc titanium nitride (ZnTiN2) that follows these design rules by having a wurtzite-derived crystal structure and showing self-passivating surface oxides created by electrochemical polarization. The sputtered ZnTiN2 thin films have optical absorption onsets below 2 eV and n-type electrical conduction of 3 S/cm. The band gap of this material is reduced from the 3.36 eV theoretical value by cation-site disorder, and the impact of cation antisites on the band structure of ZnTiN2 is explored using density functional theory. Under electrochemical polarization, the ZnTiN2 surfaces have TiO2- or ZnO-like character, consistent with Materials Project Pourbaix calculations predicting the formation of stable solid phases under near-neutral pH. These results show that ZnTiN2 is a promising candidate for photoelectrochemical liquid fuel generation and demonstrate a new materials design approach to other photoelectrodes with self-passivating native operational surface chemistry.
RESUMEN
Alternative fuels are essential to enable the transition to a sustainable and environmentally friendly energy supply. Synthetic fuels derived from renewable energies can act as energy storage media, thus mitigating the effects of fossil fuels on environment and health. Their economic viability, environmental impact, and compatibility with current infrastructure and technologies are fuel and power source specific. Nitrogen-based fuels pose one possible synthetic fuel pathway. In this review, we discuss the progress and current research on utilization of nitrogen-based fuels in power applications, covering the complete fuel cycle. We cover the production, distribution, and storage of nitrogen-based fuels. We assess much of the existing literature on the reactions involved in the ammonia to nitrogen atom pathway in nitrogen-based fuel combustion. Furthermore, we discuss nitrogen-based fuel applications ranging from combustion engines to gas turbines, as well as their exploitation by suggested end-uses. Thereby, we evaluate the potential opportunities and challenges of expanding the role of nitrogen-based molecules in the energy sector, outlining their use as energy carriers in relevant fields.
RESUMEN
Exploiting the high surface-area-to-volume ratio of nanomaterials to store energy in the form of electrochemical alloys is an exceptionally promising route for achieving high-rate energy storage and delivery. Nanoscale palladium hydride is an excellent model system for understanding how nanoscale-specific properties affect the absorption and desorption of energy carrying equivalents. Hydrogen absorption and desorption in shape-controlled Pd nanostructures does not occur uniformly across the entire nanoparticle surface. Instead, hydrogen absorption and desorption proceed selectively through high-activity sites at the corners and edges. Such a mechanism hinders the hydrogen absorption rates and greatly reduces the benefit of nanoscaling the dimensions of the palladium. To solve this, we modify the surface of palladium with an ultrathin platinum shell. This modification nearly removes the barrier for hydrogen absorption (89 kJ/mol without a Pt shell and 1.8 kJ/mol with a Pt shell) and enables diffusion through the entire Pd/Pt surface.
RESUMEN
We developed a method to colloidally synthesize atomically thin metal sulfides (ATMS). Unlike conventional 2D systems such as MoS2 and graphene, none of the systems developed here are inherently layered compounds nor have known layered polymorphs in their bulk forms. The synthesis proceeds via a cation-exchange reaction starting from single- and multi-layer Ag2S and going to various metal sulfides. The synthesized ATMS retain their size and shape during the cation-exchange reaction and are either single-layer or a few-layer, depending on the starting Ag2S samples. They have lateral dimensions on the order of 5-10 nm and are colloidally stabilized by Z- and L-type ligands. Here, we demonstrate the synthesis of single-layer and a few-layer ZnS, CdS, CoS2, and PbS. We find that the optical properties of these ATMS are quite distinct from the platelet or quantum-dot versions of the same metal sulfides.
RESUMEN
Quantitative colloidal ligand exchange on lead-halide perovskite nanocrystals (NCs) has remained a challenge due to the dynamic passivation of amines and carboxylic acids and the instability of core lead-halide perovskite systems. Here, we present a facile colloidal ligand exchange process using cinnamate acid ligands to quantitatively displace native oleate ligands on CsPbBr3 NCs. The short cinnamate ligands lead to a 23-fold enhancement of the electron-donating ability of the CsPbBr3 NCs when benzoquinone is used as an electron acceptor. A significantly increased photoredox activity is also observed in a complete photocatalytic reaction: the α-alkylation of aldehydes. Our results provide a new strategy to tune the photoredox activity of halide perovskite NCs as well as the exploration of NC-ligand interactions.
RESUMEN
We developed a postsynthetic treatment to produce impurity n-type doped PbSe QDs with In3+ as the substitutional dopant. Increasing the incorporated In content is accompanied by a gradual bleaching of the interband first-exciton transition and concurrently the appearance of a size-dependent, intraband absorption, suggesting the controlled introduction of delocalized electrons into the QD band edge states under equilibrium conditions. We compare the optical properties of our In-doped PbSe QDs to cobaltocene treated QDs, where the n-type dopant arises from remote reduction of the PbSe QDs and observe similar behavior. Spectroelectrochemical measurements also demonstrate characteristic n-type signatures, including both an induced absorption within the electrochemical bandgap and a shift of the Fermi-level toward the conduction band. Finally, we demonstrate that the In3+ dopants can be reversibly removed from the PbSe QDs, whereupon the first exciton bleach is recovered. Our results demonstrate that PbSe QDs can be controllably n-type doped via impurity aliovalent substitutional doping.
RESUMEN
We modify the fundamental electronic properties of metallic (1T phase) nanosheets of molybdenum disulfide (MoS2) through covalent chemical functionalization, and thereby directly influence the kinetics of the hydrogen evolution reaction (HER), surface energetics, and stability. Chemically exfoliated, metallic MoS2 nanosheets are functionalized with organic phenyl rings containing electron donating or withdrawing groups. We find that MoS2 functionalized with the most electron donating functional group (p-(CH3CH2)2NPh-MoS2) is the most efficient catalyst for HER in this series, with initial activity that is slightly worse compared to the pristine metallic phase of MoS2. The p-(CH3CH2)2NPh-MoS2 is more stable than unfunctionalized metallic MoS2 and outperforms unfunctionalized metallic MoS2 for continuous H2 evolution within 10 min under the same conditions. With regards to the entire studied series, the overpotential and Tafel slope for catalytic HER are both directly correlated with the electron donating strength of the functional group. The results are consistent with a mechanism involving ground-state electron donation or withdrawal to/from the MoS2 nanosheets, which modifies the electron transfer kinetics and catalytic activity of the MoS2 nanosheet. The functional groups preserve the metallic nature of the MoS2 nanosheets, inhibiting conversion to the thermodynamically stable semiconducting state (2H) when mildly annealed in a nitrogen atmosphere. We propose that the electron density and, therefore, reactivity of the MoS2 nanosheets are controlled by the attached functional groups. Functionalizing nanosheets of MoS2 and other transition metal dichalcogenides provides a synthetic chemical route for controlling the electronic properties and stability within the traditionally thermally unstable metallic state.
RESUMEN
Electronic impurity doping of bulk semiconductors is an essential component of semiconductor science and technology. Yet there are only a handful of studies demonstrating control of electronic impurities in semiconductor nanocrystals. Here, we studied electronic impurity doping of colloidal PbSe quantum dots (QDs) using a postsynthetic cation exchange reaction in which Pb is exchanged for Ag. We found that varying the concentration of dopants exposed to the as-synthesized PbSe QDs controls the extent of exchange. The electronic impurity doped QDs exhibit the fundamental spectroscopic signatures associated with injecting a free charge carrier into a QD under equilibrium conditions, including a bleach of the first exciton transition and the appearance of a quantum-confined, low-energy intraband absorption feature. Photoelectron spectroscopy confirms that Ag acts as a p-type dopant for PbSe QDs and infrared spectroscopy is consistent with k·p calculations of the size-dependent intraband transition energy. We find that to bleach the first exciton transition by an average of 1 carrier per QD requires that approximately 10% of the Pb be replaced by Ag. We hypothesize that the majority of incorporated Ag remains at the QD surface and does not interact with the core electronic states of the QD. Instead, the excess Ag at the surface promotes the incorporation of <1% Ag into the QD core where it causes p-type doping behavior.
RESUMEN
The anion photoelectron spectra of ortho-, meta-, and para-methylphenoxide, as well as methyl deprotonated meta-methylphenol, were measured. Using the Slow Electron Velocity Map Imaging technique, the Electron Affinities (EAs) of the o-, m-, and p-methylphenoxyl radicals were measured as follows: 2.1991±0.0014, 2.2177±0.0014, and 2.1199±0.0014 eV, respectively. The EA of m-methylenephenol was also obtained, 1.024±0.008 eV. In all four cases, the dominant vibrational progressions observed are due to several ring distortion vibrational normal modes that were activated upon photodetachment, leading to vibrational progressions spaced by â¼500 cm-1. Using the methylphenol O-H bond dissociation energies reported by King et al. and revised by Karsili et al., a thermodynamic cycle was constructed and the acidities of the methylphenol isomers were determined as follows: ΔacidH298K0=348.39±0.25, 348.82±0.25, 350.08±0.25, and 349.60±0.25 kcal/mol for cis-ortho-, trans-ortho-, m-, and p-methylphenol, respectively. The excitation energies for the ground doublet state to the lowest excited doublet state electronic transition in o-, m-, and p-methylphenoxyl were also measured as follows: 1.029±0.009, 0.962±0.002, and 1.029±0.009 eV, respectively. In the photoelectron spectra of the neutral excited states, C-O stretching modes were excited in addition to ring distortion modes. Electron autodetachment was observed in the cases of both m- and p-methylphenoxide, with the para isomer showing a lower photon energy onset for this phenomenon.
RESUMEN
Vacancy-ordered double perovskites of the general formula A2BX6 are a family of perovskite derivatives composed of a face-centered lattice of nearly isolated [BX6] units with A-site cations occupying the cuboctahedral voids. Despite the presence of isolated octahedral units, the close-packed iodide lattice provides significant electronic dispersion, such that Cs2SnI6 has recently been explored for applications in photovoltaic devices. To elucidate the structure-property relationships of these materials, we have synthesized solid-solution Cs2Sn1-xTexI6. However, even though tellurium substitution increases electronic dispersion via closer I-I contact distances, the substitution experimentally yields insulating behavior from a significant decrease in carrier concentration and mobility. Density functional calculations of native defects in Cs2SnI6 reveal that iodine vacancies exhibit a low enthalpy of formation, and that the defect energy level is a shallow donor to the conduction band rendering the material tolerant to these defect states. The increased covalency of Te-I bonding renders the formation of iodine vacancy states unfavorable and is responsible for the reduction in conductivity upon Te substitution. Additionally, Cs2TeI6 is intolerant to the formation of these defects, because the defect level occurs deep within the band gap and thus localizes potential mobile charge carriers. In these vacancy-ordered double perovskites, the close-packed lattice of iodine provides significant electronic dispersion, while the interaction of the B- and X-site ions dictates the properties as they pertain to electronic structure and defect tolerance. This simplified perspective based on extensive experimental and theoretical analysis provides a platform from which to understand structure-property relationships in functional perovskite halides.
RESUMEN
Colloidal quantum dots (QDs) are promising candidates for the next generation of photovoltaic (PV) technologies. Much of the progress in QD PVs is based on using PbS QDs, partly because they are stable under ambient conditions. There is considerable interest in extending this work to PbSe QDs, which have shown an enhanced photocurrent due to multiple exciton generation (MEG). One problem complicating such device-based studies is a poor stability of PbSe QDs toward exposure to ambient air. Here we develop a direct cation exchange synthesis to produce PbSe QDs with a large range of sizes and with in situ chloride and cadmium passivation. The synthesized QDs have excellent air stability, maintaining their photoluminescence quantum yield under ambient conditions for more than 30 days. Using these QDs, we fabricate high-performance solar cells without any protection and demonstrate a power conversion efficiency exceeding 6%, which is a current record for PbSe QD solar cells.
RESUMEN
We use gas-phase negative ion photoelectron spectroscopy to study the quasilinear carbene propargylene, HCCCH, and its isotopologue DCCCD. Photodetachment from HCCCH affords the XÌ(3B) ground state of HCCCH and its ã(1A), bÌ (1B), dÌ(1A2), and BÌ(3A2) excited states. Extended, negatively anharmonic vibrational progressions in the XÌ(3B) ground state and the open-shell singlet bÌ (1B) state arise from the change in geometry between the anion and the neutral states and complicate the assignment of the origin peak. The geometry change arising from electron photodetachment results in excitation of the ν4 symmetric CCH bending mode, with a measured fundamental frequency of 363 ± 57 cm(1) in the XÌ(3B) state. Our calculated harmonic frequency for this mode is 359 cm(1). The FranckCondon envelope of this progression cannot be reproduced within the harmonic approximation. The spectra of the ã(1A), dÌ(1A2), and BÌ(3A2) states are each characterized by a short vibrational progression and a prominent origin peak, establishing that the geometries of the anion and these neutral states are similar. Through comparison of the HCCCH and DCCCD photoelectron spectra, we measure the electron affinity of HCCCH to be 1.156 ± (0.095)(0.010) eV, with a singlettriplet splitting between the XÌ(3B) and the ã(1A) states of ΔEST = 0.500 ± (0.01)(0.10) eV (11.5 ± (0.2)(2.3) kcal/mol). Experimental term energies of the higher excited states are T0 [bÌ(1B)] = 0.94 ± (0.20)(0.22) eV, T0 [dÌ(1A2)] = 3.30 ± (0.02)(0.10) eV, T0 [BÌ(3A2)] = 3.58 ± (0.02)(0.10) eV. The photoelectron angular distributions show significant π character in all the frontier molecular orbitals, with additional σ character in orbitals that create the XÌ(3B) and bÌ(1B) states upon electron detachment. These results are consistent with a quasilinear, nonplanar, doubly allylic structure of XÌ(3B) HCCCH with both diradical and carbene character.
RESUMEN
Using X-ray and ultraviolet photoelectron spectroscopy, the surface band positions of solution-processed CH3NH3PbI3 perovskite thin films deposited on an insulating substrate (Al2O3), various n-type (TiO2, ZrO2, ZnO, and F:SnO2 (FTO)) substrates, and various p-type (PEDOT:PSS, NiO, and Cu2O) substrates are studied. Many-body GW calculations of the valence band density of states, with spin-orbit interactions included, show a clear correspondence with our experimental spectra and are used to confirm our assignment of the valence band maximum. These surface-sensitive photoelectron spectroscopy measurements result in shifting of the CH3NH3PbI3 valence band position relative to the Fermi energy as a function of substrate type, where the valence band to Fermi energy difference reflects the substrate type (insulating-, n-, or p-type). Specifically, the insulating- and n-type substrates increase the CH3NH3PbI3 valence band to Fermi energy difference to the extent of pinning the conduction band to the Fermi level; whereas, the p-type substrates decrease the valence band to Fermi energy difference. This observation implies that the substrate's properties enable control over the band alignment of CH3NH3PbI3 perovskite thin-film devices, potentially allowing for new device architectures as well as more efficient devices.
RESUMEN
The complex interplay between local chemistry, the solvent microenvironment, and electrified interfaces frequently present in electrocatalytic reactions has motivated the development of quantum chemical methods that can accurately model these effects. Here, we predict the thermodynamics of the nitrogen reduction reaction (NRR) at sulfur vacancies in 1T'-phase MoS2 and highlight how the realistic treatment of potential within grand canonical density functional theory (GC-DFT) seamlessly captures the multiple competing effects of applied potential on a catalyst interface interacting with solvated molecules. In the canonical approach, the computational hydrogen electrode is widely used and predicts that adsorbed N2 structure properties are potential-independent. In contrast, GC-DFT calculations show that reductive potentials activate N2 toward electroreduction by controlling its back-bonding strength and lengthening the N-N triple bond while decreasing its bond order. Similar trends are observed for another classic back-bonding ligand in CO, suggesting that this mechanism may be broadly relevant to other electrochemistries involving back-bonded adsorbates. Furthermore, reductive potentials are required to make the subsequent N2 hydrogenation steps favorable but simultaneously destabilizes the N2 adsorbed structure resulting in a trade-off between the favorability of N2 adsorption and the subsequent reaction steps. We show that GC-DFT facilitates modeling all these phenomena and that together they can have important implications in predicting electrocatalyst selectivity for the NRR and potentially other reactions.
RESUMEN
The electrochemical nitrogen and nitrate reduction reactions (E-NRR and E-NO3RR) promise to provide decentralized and fossil-fuel-free ammonia synthesis, and as a result, E-NRR and E-NO3RR research has surged in recent years. Membrane NH3/NH4+ crossover during E-NRR and E-NO3RR decreases Faradaic efficiency and thus the overall yield. During catalyst evaluation, such unaccounted-for crossover results in measurement error. Herein, several commercially available membranes were screened and evaluated for use in ammonia-generating electrolyzers. NH3/NH4+ crossover of the commonly used cation-exchange membrane (CEM) Nafion 212 was measured in an H-cell architecture and found to be significant. Interestingly, some anion exchange membranes (AEMs) show negligible NH4+ crossover, addressing the problem of measurement error due to NH4+ crossover. Further investigation of select membranes in a zero-gap gas diffusion electrode (GDE)-cell determines that most membranes show significant NH3 crossover when the cell is in an open circuit. However, uptake and crossover of NH3 are mitigated when -1.6 V is applied across the GDE-cell. The results of this study present AEMs as a useful alternative to CEMs for H-cell E-NRR and E-NO3RR electrolyzer studies and present critical insight into membrane crossover in zero-gap GDE-cell E-NRR and E-NO3RR electrolyzers.
RESUMEN
2D materials, particularly transition metal dichalcogenides (TMDCs), have shown great potential for microelectronics and optoelectronics. However, a major challenge in commercializing these materials is the inability to control their doping at a wafer scale with high spatial fidelity. Interface chemistry is used with the underlying substrate oxide and concomitant exposure to visible light in ambient conditions for photo-dedoping wafer scale MoS2. It is hypothesized that the oxide layer traps photoexcited holes, leaving behind long-lived electrons that become available for surface reactions with ambient air at sulfur vacancies (defect sites) resulting in dedoping. Additionally, high fidelity spatial control is showcased over the dedoping process, by laser writing, and fine control achieved over the degree of doping by modulating the illumination time and power density. This localized change in MoS2 doping density is very stable (at least 7 days) and robust to processing conditions like high temperature and vacuum. The scalability and ease of implementation of this approach can address one of the major issues preventing the "Lab to Fab" transition of 2D materials and facilitate its seamless integration for commercial applications in multi-logic devices, inverters, and other optoelectronic devices.
RESUMEN
This work utilizes EIS to elucidate the impact of catalyst-ionomer interactions and cathode hydroxide ion transport resistance (RCL,OH-) on cell voltage and product selectivity for the electrochemical conversion of CO to ethylene. When using the same Cu catalyst and a Nafion ionomer, varying ink dispersion and electrode deposition methods results in a change of 2 orders of magnitude for RCL,OH- and ca. a 25% change in electrode porosity. Decreasing RCL,OH- results in improved ethylene Faradaic efficiency (FE), up to â¼57%, decrease in hydrogen FE, by â¼36%, and reduction in cell voltage by up to 1 V at 700 mA/cm2. Through the optimization of electrode fabrication conditions, we achieve a maximum of 48% ethylene with >90% FE for non-hydrogen products in a 25 cm2 membrane electrode assembly at 700 mA/cm2 and <3 V. Additionally, the implications of optimizing RCL,OH- is translated to other material requirements, such as anode porosity. We find that the best performing electrodes use ink dispersion and deposition techniques that project well into roll-to-roll processes, demonstrating the scalability of the optimized process.
RESUMEN
We have developed a colloidal synthesis of 4-10 nm diameter indium nitride (InN) nanocrystals that exhibit both a visible absorption onset (â¼1.8 eV) and a strong localized surface plasmon resonance absorption in the mid-infrared (â¼3000 nm). Chemical oxidation and reduction reversibly modulate both the position and intensity of this plasmon feature as well as the band-to-band absorption onset. Chemical oxidation of InN nanocrystals with NOBF4 is found to red-shift the absorption onset to â¼1.3 eV and reduce the plasmon absorption energy (to 3550 nm) and intensity (by an order of magnitude at 2600 nm). Reduction of these oxidized species with Bu4NBH4 fully recovers the original optical properties. Calculations suggest that the carrier density in these InN nanocrystals decreases upon oxidation from 2.89 × 10(20) cm(-3) to 2.51 × 10(20) cm(-3), consistent with the removal of â¼4 electrons per nanocrystal. This study provides a unique example of the ability to tune the optical properties of colloidal nanomaterials, and in particular the LSPR absorption, with reversible redox reactions that do not affect the semiconductor chemical composition or phase.
RESUMEN
Two-dimensional materials have unusual properties and promise applications in nanoelectronics, spintronics, photonics, (electro)catalysis, separations, and elsewhere. Most are inorganic and their properties are difficult to tune. Here we report the preparation of Zn porphene, a member of the previously only hypothetical organic metalloporphene family. Similar to graphene, these also are fully conjugated two-dimensional polymers, but are composed of fused metalloporphyrin rings. Zn porphene is synthesized on water surface by two-dimensional oxidative polymerization of a Langmuir layer of Zn porphyrin with K2IrCl6, reminiscent of known one-dimensional polymerization of pyrroles. It is transferable to other substrates and bridges µm-sized pits. Contrary to previous theoretical predictions of metallic conductivity, it is a p-type semiconductor due to a predicted Peierls distortion of its unit cell from square to rectangular, analogous to the appearance of bond-length alternation in antiaromatic molecules. The observed reversible insertion of various metal ions, possibly carrying a fifth or sixth ligand, promises tunability and even patterning of circuits on an atomic canvas without removing any π centers from conjugation.
RESUMEN
Negative-ion photoelectron spectroscopy of ICN(-) (XÌ (2)Σ(+)) reveals transitions to the ground electronic state (XÌ (1)Σ(+)) of ICN as well as the first five excited states ((3)Π(2), (3)Π(1), Π(0(-) ) (3), Π(0(+) ) (3), and (1)Π(1)) that make up the ICN A continuum. By starting from the equilibrium geometry of the anion, photoelectron spectroscopy characterizes the electronic structure of ICN at an elongated I-C bond length of 2.65 Å. Because of this bond elongation, the lowest three excited states of ICN ((3)Π(2), (3)Π(1), and Π(0(-) ) (3)) are resolved for the first time in the photoelectron spectrum. In addition, the spectrum has a structured peak that arises from the frequently studied conical intersection between the Π(0(+) ) (3) and (1)Π(1) states. The assignment of the spectrum is aided by MR-SO-CISD calculations of the potential energy surfaces for the anion and neutral ICN electronic states, along with calculations of the vibrational levels supported by these states. Through thermochemical cycles involving spectrally narrow transitions to the excited states of ICN, we determine the electron affinity, EA(ICN), to be 1.34(5) (+0.04∕-0.02) eV and the anion dissociation energy, D(0)(XÌ (2)Σ(+) I-CN(-)), to be 0.83 (+0.04/-0.02) eV.