Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 43(6): 958-970, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37078284

RESUMEN

BACKGROUND: Cerebral cavernous malformations, also known as cavernous angiomas, are blood vessel abnormalities comprised of clusters of grossly enlarged and hemorrhage-prone capillaries. The prevalence in the general population, including asymptomatic cases, is estimated to be 0.5%. Some patients develop severe symptoms, including seizures and focal neurological deficits, whereas others remain asymptomatic. The causes of this remarkable presentation heterogeneity within a primarily monogenic disease remain poorly understood. METHODS: We established a chronic mouse model of cerebral cavernous malformations, induced by postnatal ablation of Krit1 with Pdgfb-CreERT2, and examined lesion progression in these mice with T2-weighted 7T magnetic resonance imaging (MRI). We also established a modified protocol for dynamic contrast-enhanced MRI and produced quantitative maps of gadolinium tracer gadobenate dimeglumine. After terminal imaging, brain slices were stained with antibodies against microglia, astrocytes, and endothelial cells. RESULTS: These mice develop cerebral cavernous malformations lesions gradually over 4 to 5 months of age throughout the brain. Precise volumetric analysis of individual lesions revealed nonmonotonous behavior, with some lesions temporarily growing smaller. However, the cumulative lesional volume invariably increased over time and after about 2 months followed a power trend. Using dynamic contrast-enhanced MRI, we produced quantitative maps of gadolinium in the lesions, indicating a high degree of heterogeneity in lesional permeability. MRI properties of the lesions were correlated with cellular markers for endothelial cells, astrocytes, and microglia. Multivariate comparisons of MRI properties of the lesions with cellular markers for endothelial and glial cells revealed that increased cell density surrounding lesions correlates with stability, whereas denser vasculature within and surrounding the lesions may correlate with high permeability. CONCLUSIONS: Our results lay a foundation for better understanding individual lesion properties and provide a comprehensive preclinical platform for testing new drug and gene therapies for controlling cerebral cavernous malformations.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Humanos , Ratones , Animales , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico por imagen , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Gadolinio , Células Endoteliales/patología , Encéfalo/patología , Imagen por Resonancia Magnética
2.
Magn Reson Med ; 89(6): 2255-2263, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36669874

RESUMEN

PURPOSE: To develop and test compressed sensing-based multiframe 3D MRI of grid-tagged hyperpolarized gas in the lung. THEORY AND METHODS: Applying grid-tagging RF pulses to inhaled hyperpolarized gas results in images in which signal intensity is predictably and sparsely distributed. In the present work, this phenomenon was used to produce a sampling pattern in which k-space is undersampled by a factor of approximately seven, yet regions of high k-space energy remain densely sampled. Three healthy subjects received multiframe 3D 3 He tagging MRI using this undersampling method. Images were collected during a single exhalation at eight timepoints spanning the breathing cycle from end-of-inhalation to end-of-exhalation. Grid-tagged images were used to generate 3D displacement maps of the lung during exhalation, and time-resolved maps of principal strains and fractional volume change were generated from these displacement maps using finite-element analysis. RESULTS: Tags remained clearly resolvable for 4-6 timepoints (5-8 s) in each subject. Displacement maps revealed noteworthy temporal and spatial nonlinearities in lung motion during exhalation. Compressive normal strains occurred along all three principal directions but were primarily oriented in the head-foot direction. Fractional volume changes displayed clear bilateral symmetry, but with the lower lobes displaying slightly higher change than the upper lobes in 2 of the 3 subjects. CONCLUSION: We developed a compressed sensing-based method for multiframe 3D MRI of grid-tagged hyperpolarized gas in the lung during exhalation. This method successfully overcomes previous challenges for 3D dynamic grid-tagging, allowing time-resolved biomechanical readouts of lung function to be generated.


Asunto(s)
Compresión de Datos , Pulmón , Masculino , Humanos , Pulmón/diagnóstico por imagen , Respiración , Imagen por Resonancia Magnética/métodos
3.
Proc Natl Acad Sci U S A ; 117(11): 5644-5654, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123081

RESUMEN

Treatment of many pathologies of the brain could be improved markedly by the development of noninvasive therapeutic approaches that elicit robust, endothelial cell-selective gene expression in specific brain regions that are targeted under MR image guidance. While focused ultrasound (FUS) in conjunction with gas-filled microbubbles (MBs) has emerged as a noninvasive modality for MR image-guided gene delivery to the brain, it has been used exclusively to transiently disrupt the blood-brain barrier (BBB), which may induce a sterile inflammation response. Here, we introduce an MR image-guided FUS method that elicits endothelial-selective transfection of the cerebral vasculature (i.e., "sonoselective" transfection), without opening the BBB. We first determined that activating circulating, cationic plasmid-bearing MBs with pulsed low-pressure (0.1 MPa) 1.1-MHz FUS facilitates sonoselective gene delivery to the endothelium without MRI-detectable disruption of the BBB. The degree of endothelial selectivity varied inversely with the FUS pressure, with higher pressures (i.e., 0.3-MPa and 0.4-MPa FUS) consistently inducing BBB opening and extravascular transfection. Bulk RNA sequencing analyses revealed that the sonoselective low-pressure regimen does not up-regulate inflammatory or immune responses. Single-cell RNA sequencing indicated that the transcriptome of sonoselectively transfected brain endothelium was unaffected by the treatment. The approach developed here permits targeted gene delivery to blood vessels and could be used to promote angiogenesis, release endothelial cell-secreted factors to stimulate nerve regrowth, or recruit neural stem cells.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Transfección/métodos , Ondas Ultrasónicas , Animales , Barrera Hematoencefálica/efectos de la radiación , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Microburbujas , Transcriptoma
4.
J Neurooncol ; 156(1): 109-122, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34734364

RESUMEN

PURPOSE: Glioblastoma (GB) poses formidable challenges to systemic immunotherapy approaches owing to the paucity of immune infiltration and presence of the blood brain/tumor barriers (BBB/BTB). We hypothesize that BBB/BTB disruption (BBB/BTB-D) with focused ultrasound (FUS) and microbubbles (MB) increases immune infiltration in GB. As a prelude to rational combination of FUS with ITx, we herein investigate the impact of localized BBB/BTB-D on innate and adaptive immune responses in an orthotopic murine GB model. METHODS: Mice with GL261 gliomas received i.v. MB and underwent FUS BBB/BTB-D (1.1 MHz, 0.5 Hz pulse repetition frequency, 10 ms bursts, 0.4-0.6 MPa). Brains, meninges, and peripheral lymphoid organs were excised and examined by flow cytometry 1-2 weeks following FUS. RESULTS: The number of dendritic cells (DC) was significantly elevated in GL261 tumors and draining cervical LN in response to sonication. CD86 + DC frequency was also upregulated with 0.6 MPa FUS, suggesting increased maturity. While FUS did not significantly alter CD8 + T cell frequency across evaluated organs, these cells upregulated checkpoint molecules at 1 week post-FUS, suggesting increased activation. By 2 weeks post-FUS, we noted emergence of adaptive resistance mechanisms, including upregulation of TIGIT on CD4 + T cells and CD155 on non-immune tumor and stromal cells. CONCLUSIONS: FUS BBB/BTB-D exerts mild, transient inflammatory effects in gliomas-suggesting that its combination with adjunct therapeutic strategies targeting adaptive resistance may improve outcomes. The potential for FUS-mediated BBB/BTB-D to modify immunological signatures is a timely and important consideration for ongoing clinical trials investigating this regimen in GB.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Terapia por Ultrasonido , Animales , Barrera Hematoencefálica/patología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Glioblastoma/inmunología , Glioblastoma/patología , Glioblastoma/terapia , Imagen por Resonancia Magnética/métodos , Ratones
5.
Nature ; 537(7622): 652-5, 2016 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-27680938

RESUMEN

Magnetic resonance imaging (MRI) provides fine spatial resolution, spectral sensitivity and a rich variety of contrast mechanisms for diagnostic medical applications. Nuclear imaging using γ-ray cameras offers the benefits of using small quantities of radioactive tracers that seek specific targets of interest within the body. Here we describe an imaging and spectroscopic modality that combines favourable aspects of both approaches. Spatial information is encoded into the spin orientations of tiny amounts of a polarized radioactive tracer using pulses of both radio-frequency electromagnetic radiation and magnetic-field gradients, as in MRI. However, rather than detecting weak radio-frequency signals, imaging information is obtained through the detection of γ-rays. A single γ-ray detector can be used to acquire an image; no γ-ray camera is needed. We demonstrate the feasibility of our technique by producing images and spectra from a glass cell containing only about 4 × 10(13) atoms (about 1 millicurie) of the metastable isomer (131m)Xe that were polarized using the laser technique of spin-exchange optical pumping. If the cell had instead been filled with water and imaged using conventional MRI, then it would have contained more than 10(24) water molecules. The high sensitivity of our modality expands the breadth of applications of magnetic resonance, and could lead to a new class of radioactive tracers.


Asunto(s)
Rayos gamma , Imagen por Resonancia Magnética , Imagen Molecular/métodos , Análisis Espectral/métodos , Trazadores Radiactivos , Isótopos de Xenón
6.
Magn Reson Med ; 86(5): 2822-2836, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34227163

RESUMEN

PURPOSE: To characterize the differences between histogram-based and image-based algorithms for segmentation of hyperpolarized gas lung images. METHODS: Four previously published histogram-based segmentation algorithms (ie, linear binning, hierarchical k-means, fuzzy spatial c-means, and a Gaussian mixture model with a Markov random field prior) and an image-based convolutional neural network were used to segment 2 simulated data sets derived from a public (n = 29 subjects) and a retrospective collection (n = 51 subjects) of hyperpolarized 129Xe gas lung images transformed by common MRI artifacts (noise and nonlinear intensity distortion). The resulting ventilation-based segmentations were used to assess algorithmic performance and characterize optimization domain differences in terms of measurement bias and precision. RESULTS: Although facilitating computational processing and providing discriminating clinically relevant measures of interest, histogram-based segmentation methods discard important contextual spatial information and are consequently less robust in terms of measurement precision in the presence of common MRI artifacts relative to the image-based convolutional neural network. CONCLUSIONS: Direct optimization within the image domain using convolutional neural networks leverages spatial information, which mitigates problematic issues associated with histogram-based approaches and suggests a preferred future research direction. Further, the entire processing and evaluation framework, including the newly reported deep learning functionality, is available as open source through the well-known Advanced Normalization Tools ecosystem.


Asunto(s)
Semántica , Isótopos de Xenón , Algoritmos , Ecosistema , Humanos , Procesamiento de Imagen Asistido por Computador , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Retrospectivos
7.
Magn Reson Med ; 86(6): 2966-2986, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34478584

RESUMEN

Hyperpolarized (HP) 129 Xe MRI uniquely images pulmonary ventilation, gas exchange, and terminal airway morphology rapidly and safely, providing novel information not possible using conventional imaging modalities or pulmonary function tests. As such, there is mounting interest in expanding the use of biomarkers derived from HP 129 Xe MRI as outcome measures in multi-site clinical trials across a range of pulmonary disorders. Until recently, HP 129 Xe MRI techniques have been developed largely independently at a limited number of academic centers, without harmonizing acquisition strategies. To promote uniformity and adoption of HP 129 Xe MRI more widely in translational research, multi-site trials, and ultimately clinical practice, this position paper from the 129 Xe MRI Clinical Trials Consortium (https://cpir.cchmc.org/XeMRICTC) recommends standard protocols to harmonize methods for image acquisition in HP 129 Xe MRI. Recommendations are described for the most common HP gas MRI techniques-calibration, ventilation, alveolar-airspace size, and gas exchange-across MRI scanner manufacturers most used for this application. Moreover, recommendations are described for 129 Xe dose volumes and breath-hold standardization to further foster consistency of imaging studies. The intention is that sites with HP 129 Xe MRI capabilities can readily implement these methods to obtain consistent high-quality images that provide regional insight into lung structure and function. While this document represents consensus at a snapshot in time, a roadmap for technical developments is provided that will further increase image quality and efficiency. These standardized dosing and imaging protocols will facilitate the wider adoption of HP 129 Xe MRI for multi-site pulmonary research.


Asunto(s)
Pulmón , Isótopos de Xenón , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Multicéntricos como Asunto , Ventilación Pulmonar , Respiración
8.
Radiology ; 297(1): 201-210, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32779976

RESUMEN

Background Apparent diffusion coefficient (ADC) maps of inhaled hyperpolarized gases have shown promise in the characterization of emphysema in patients with chronic obstructive pulmonary disease (COPD), yet an easily interpreted quantitative metric beyond mean and standard deviation has not been established. Purpose To introduce a quantitative framework with which to characterize emphysema burden based on hyperpolarized helium 3 (3He) and xenon 129 (129Xe) ADC maps and compare its diagnostic performance with CT-based emphysema metrics and pulmonary function tests (PFTs). Materials and Methods Twenty-seven patients with mild, moderate, or severe COPD and 13 age-matched healthy control subjects participated in this retrospective study. Participants underwent CT and multiple b value diffusion-weighted 3He and 129Xe MRI examinations and standard PFTs between August 2014 and November 2017. ADC-based emphysema index was computed separately for each gas and b value as the fraction of lung voxels with ADC values greater than in the healthy group 99th percentile. The resulting values were compared with quantitative CT results (relative lung area <-950 HU) as the reference standard. Diagnostic performance metrics included area under the receiver operating characteristic curve (AUC). Spearman rank correlations and Wilcoxon rank sum tests were performed between ADC-, CT-, and PFT-based metrics, and intraclass correlation was performed between repeated measurements. Results Thirty-six participants were evaluated (mean age, 60 years ± 6 [standard deviation]; 20 women). ADC-based emphysema index was highly repeatable (intraclass correlation coefficient > 0.99) and strongly correlated with quantitative CT (r = 0.86, P < .001 for 3He; r = 0.85, P < .001 for 129Xe) with high AUC (≥0.93; 95% confidence interval [CI]: 0.85, 1.00). ADC emphysema indices were also correlated with percentage of predicted diffusing capacity of lung for carbon monoxide (r = -0.81, P < .001 for 3He; r = -0.80, P < .001 for 129Xe) and percentage of predicted residual lung volume divided by total lung capacity (r = 0.65, P < .001 for 3He; r = 0.61, P < .001 for 129Xe). Conclusion Emphysema index based on hyperpolarized helium 3 or xenon 129 diffusion MRI provides a repeatable measure of emphysema burden, independent of gas or b value, with similar diagnostic performance as quantitative CT or pulmonary function metrics. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Schiebler and Fain in this issue.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Enfisema Pulmonar/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Estudios de Casos y Controles , Femenino , Helio , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Función Respiratoria , Isótopos de Xenón
9.
Small ; 15(49): e1903460, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31642183

RESUMEN

Microbubble activation with focused ultrasound (FUS) facilitates the noninvasive and spatially-targeted delivery of systemically administered therapeutics across the blood-brain barrier (BBB). FUS also augments the penetration of nanoscale therapeutics through brain tissue; however, this secondary effect has not been leveraged. Here, 1 MHz FUS sequences that increase the volume of transfected brain tissue after convection-enhanced delivery of gene-vector "brain-penetrating" nanoparticles were first identified. Next, FUS preconditioning is applied prior to trans-BBB nanoparticle delivery, yielding up to a fivefold increase in subsequent transgene expression. Magnetic resonance imaging (MRI) analyses of tissue temperature and Ktrans confirm that augmented transfection occurs through modulation of parenchymal tissue with FUS. FUS preconditioning represents a simple and effective strategy for markedly improving the efficacy of gene vector nanoparticles in the central nervous system.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Ondas Ultrasónicas , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/metabolismo , Sistema Nervioso Central/diagnóstico por imagen , Sistema Nervioso Central/metabolismo , Imagen por Resonancia Magnética , Microburbujas , Temperatura
10.
Magn Reson Med ; 79(3): 1532-1537, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28631853

RESUMEN

PURPOSE: MR acoustic radiation force imaging (MR-ARFI) provides a method to visualize the focal spot of a focused ultrasound (FUS) beam without introducing a significant temperature rise. With conventional spoiled MR-ARFI pulse sequences, the ARFI phase always equals the motion-encoded phase. In this work, MR-ARFI using transition band balanced steady-state free precession (bSSFP) is presented, which improves the sensitivity of MR-ARFI with high acquisition speed. THEORY AND METHODS: Motion-encoding gradients (MEG) are inserted into bSSFP sequences for MR-ARFI. By applying an ultrasound pulse during the MEG, motion-encoded phase is generated, which leads to an amplified change in the image phase when operating in the bSSFP transition band. MR-ARFI was performed on a homemade gel phantom using both the proposed technique and a spoiled gradient echo ARFI sequence with identical MEG and FUS, and ARFI images were compared. RESULTS: The bSSFP-ARFI sequence generated an ARFI image phase that is more than 5 times larger than the motion-encoded phase in a few seconds with 2DFT readout. By keeping FUS pulses as short as 1.45 ms, temperature rise was insignificant during the measurement. CONCLUSION: bSSFP-ARFI has enhanced sensitivity compared with conventional MR-ARFI pulse sequences and could provide an efficient way to visualize the focal spot. Magn Reson Med 79:1532-1537, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Procesamiento de Señales Asistido por Computador , Encéfalo/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Humanos , Movimiento , Fantasmas de Imagen
11.
Magn Reson Med ; 79(6): 3122-3127, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29115692

RESUMEN

PURPOSE: To develop a rapid pulse sequence for volumetric MR thermometry. METHODS: Simulations were carried out to assess temperature deviation, focal spot distortion/blurring, and focal spot shift across a range of readout durations and maximum temperatures for Cartesian, spiral-out, and retraced spiral-in/out (RIO) trajectories. The RIO trajectory was applied for stack-of-spirals 3D imaging on a real-time imaging platform and preliminary evaluation was carried out compared to a standard 2D sequence in vivo using a swine brain model, comparing maximum and mean temperatures measured between the two methods, as well as the temporal standard deviation measured by the two methods. RESULTS: In simulations, low-bandwidth Cartesian trajectories showed substantial shift of the focal spot, whereas both spiral trajectories showed no shift while maintaining focal spot geometry. In vivo, the 3D sequence achieved real-time 4D monitoring of thermometry, with an update time of 2.9-3.3 s. CONCLUSION: Spiral imaging, and RIO imaging in particular, is an effective way to speed up volumetric MR thermometry. Magn Reson Med 79:3122-3127, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Termometría/métodos , Animales , Encéfalo/diagnóstico por imagen , Simulación por Computador , Fantasmas de Imagen , Porcinos
12.
Nano Lett ; 17(6): 3533-3542, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28511006

RESUMEN

Therapies capable of decelerating, or perhaps even halting, neurodegeneration in Parkinson's disease (PD) remain elusive. Clinical trials of PD gene therapy testing the delivery of neurotrophic factors, such as the glial cell-line derived neurotrophic factor (GDNF), have been largely ineffective due to poor vector distribution throughout the diseased regions in the brain. In addition, current delivery strategies involve invasive procedures that obviate the inclusion of early stage patients who are most likely to benefit from GDNF-based gene therapy. Here, we introduce a two-pronged treatment strategy, composed of MR image-guided focused ultrasound (FUS) and brain-penetrating nanoparticles (BPN), that provides widespread but targeted GDNF transgene expression in the brain following systemic administration. MR image-guided FUS allows circulating gene vectors to partition into the brain tissue by noninvasive and transient opening of the blood-brain barrier (BBB) within the areas where FUS is applied. Once beyond the BBB, BPN provide widespread and uniform GDNF expression throughout the targeted brain tissue. After only a single treatment, our strategy led to therapeutically relevant levels of GDNF protein content in the FUS-targeted regions in the striatum of the 6-OHDA-induced rat model of PD, which lasted at least up to 10 weeks. Importantly, our strategy restored both dopamine levels and dopaminergic neuron density and reversed behavioral indicators of PD-associated motor dysfunction with no evidence of local or systemic toxicity. Our combinatorial approach overcomes limitations of current delivery strategies, thereby potentially providing a novel means to treat PD.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Terapia Genética/métodos , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Enfermedad de Parkinson/terapia , Animales , Transporte Biológico , Encéfalo/metabolismo , Dopamina/metabolismo , Técnicas de Transferencia de Gen , Vectores Genéticos , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Imagen por Resonancia Magnética , Nanopartículas/química , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Tamaño de la Partícula , Polietilenglicoles/química , Polietileneimina/química , Ratas , Ondas Ultrasónicas
13.
Magn Reson Med ; 77(4): 1533-1543, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27122450

RESUMEN

PURPOSE: To develop a three-dimensional, free-breathing, late gadolinium enhancement (3D FB-LGE) cardiovascular magnetic resonance (CMR) technique, and to compare it with clinically used two-dimensional breath-hold LGE (2D BH-LGE). METHODS: The proposed 3D FB-LGE method consisted of inversion preparation, inversion delay, fat saturation, outer volume suppression, one-dimensional projection navigators, and a segmented stack of spirals acquisition. The 3D FB-LGE and 2D BH-LGE scans were performed on 29 cardiac patients. Qualitative analysis and quantitative analysis (in patients with scar) were performed. RESULTS: No significant differences were noted between the 3D FB-LGE and 2D BH-LGE data sets in terms of overall image quality score (2D: 4.69 ± 0.60 versus 3D: 4.55 ± 0.51, P = 0.46) and image artifact score (2D: 1.10 ± 0.31 versus 3D: 1.17 ± 0.38; P = 0.63). The average difference in fractional scar volume between the 3D and 2D methods was 1.9% (n = 5). Acquisition time was significantly shorter for the 3D FB-LGE over 2D BH-LGE by a factor of 2.83 ± 0.77 (P < 0.0001). CONCLUSIONS: The 3D FB-LGE is a viable option for patients, particularly in acute settings or in patients who are unable to comply with breath-hold instructions. Magn Reson Med 77:1533-1543, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Cinemagnética/métodos , Meglumina/análogos & derivados , Aturdimiento Miocárdico/diagnóstico por imagen , Aturdimiento Miocárdico/patología , Compuestos Organometálicos/administración & dosificación , Algoritmos , Medios de Contraste/administración & dosificación , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Meglumina/administración & dosificación , Persona de Mediana Edad , Reproducibilidad de los Resultados , Mecánica Respiratoria , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador
14.
Magn Reson Med ; 78(4): 1458-1463, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-27791285

RESUMEN

PURPOSE: To evaluate T2 , T2*, and signal-to-noise ratio (SNR) for hyperpolarized helium-3 (3 He) MRI of the human lung at three magnetic field strengths ranging from 0.43T to 1.5T. METHODS: Sixteen healthy volunteers were imaged using a commercial whole body scanner at 0.43T, 0.79T, and 1.5T. Whole-lung T2 values were calculated from a Carr-Purcell-Meiboom-Gill spin-echo-train acquisition. T2* maps and SNR were determined from dual-echo and single-echo gradient-echo images, respectively. Mean whole-lung SNR values were normalized by ventilated lung volume and administered 3 He dose. RESULTS: As expected, T2 and T2* values demonstrated a significant inverse relationship to field strength. Hyperpolarized 3 He images acquired at all three field strengths had comparable SNR values and thus appeared visually very similar. Nonetheless, the relatively small SNR differences among field strengths were statistically significant. CONCLUSIONS: Hyperpolarized 3 He images of the human lung with similar image quality were obtained at three field strengths ranging from 0.43T and 1.5T. The decrease in susceptibility effects at lower fields that are reflected in longer T2 and T2* values may be advantageous for optimizing pulse sequences inherently sensitive to such effects. The three-fold increase in T2* at lower field strength would allow lower receiver bandwidths, providing a concomitant decrease in noise and relative increase in SNR. Magn Reson Med 78:1458-1463, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Helio/química , Procesamiento de Imagen Asistido por Computador/métodos , Isótopos/química , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Procesamiento de Señales Asistido por Computador , Administración por Inhalación , Adulto , Helio/administración & dosificación , Humanos , Isótopos/administración & dosificación , Campos Magnéticos , Relación Señal-Ruido , Adulto Joven
15.
Magn Reson Med ; 74(4): 1110-5, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25335080

RESUMEN

PURPOSE: To develop and validate a method for acquiring helium-3 ((3) He) and proton ((1) H) three-dimensional (3D) image sets of the human lung with isotropic spatial resolution within a 10-s breath-hold by using compressed sensing (CS) acceleration, and to assess the fidelity of undersampled images compared with fully sampled images. METHODS: The undersampling scheme for CS acceleration was optimized and tested using (3) He ventilation data. Rapid 3D acquisition of both (3) He and (1) H data during one breath-hold was then implemented, based on a balanced steady-state free-precession pulse sequence, by random undersampling of k-space with reconstruction by means of minimizing the L1 norm and total variance. CS-reconstruction fidelity was evaluated quantitatively by comparing fully sampled and retrospectively undersampled image sets. RESULTS: Helium-3 and (1) H 3D image sets of the lung with isotropic 3.9-mm resolution were acquired during a single breath-hold in 12 s and 8 s using acceleration factors of 2 and 3, respectively. Comparison of fully sampled and retrospectively undersampled (3) He and (1) H images yielded mean absolute errors <10% and structural similarity indices >0.9. CONCLUSION: By randomly undersampling k-space and using CS reconstruction, high-quality (3) He and (1) H 3D image sets with isotropic 3.9-mm resolution can be acquired within an 8-s breath-hold.


Asunto(s)
Contencion de la Respiración , Imagenología Tridimensional/métodos , Pulmón/fisiología , Imagen por Resonancia Magnética/métodos , Protones , Adulto , Fibrosis Quística , Femenino , Helio/administración & dosificación , Helio/química , Humanos , Masculino , Adulto Joven
16.
J Magn Reson Imaging ; 42(6): 1777-82, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26012720

RESUMEN

PURPOSE: To evaluate regional anisotropy of lung-airspace orientation by assessing the dependence of helium-3 ((3) He) apparent diffusion coefficient (ADC) values on the direction of diffusion sensitization at two field strengths. MATERIALS AND METHODS: Hyperpolarized (3) He diffusion-weighted magnetic resonance imaging (MRI) of the lung was performed at 0.43T and 1.5T in 12 healthy volunteers. A gradient-echo pulse sequence was used with a bipolar diffusion-sensitization gradient applied separately along three orthogonal directions. ADC maps, median ADC values, and signal-to-noise ratios were calculated from the diffusion-weighted images. Two readers scored the ADC maps for increased values at lung margins, major fissures, or within focal central regions. RESULTS: ADC values were found to depend on the direction of diffusion sensitization (P < 0.01, except for craniocaudal vs. anteroposterior directions at 1.5T) and were increased at the lateral and medial surfaces for left-right diffusion sensitization (12 of 12 subjects); at the apex and base (9 of 12), and along the major fissure (8 of 12), for craniocaudal diffusion sensitization; and at the most anterior and posterior lung (10 of 12) for anteroposterior diffusion sensitization. Median ADC values at 0.43T (0.201 ± 0.017, left-right; 0.193 ± 0.019, craniocaudal; and 0.187 ± 0.017 cm(2) /s, anteroposterior) were slightly lower than those at 1.5T (0.205 ± 0.017, 0.197 ± 0.017 and 0.194 ± 0.016 cm(2) /s, respectively; P < 0.05). CONCLUSION: These findings indicate that diffusion-weighted hyperpolarized (3) He MRI can detect regional anisotropy of lung-airspace orientation, including that associated with preferential orientation of terminal airways near pleural surfaces.


Asunto(s)
Medios de Contraste , Imagen de Difusión por Resonancia Magnética/métodos , Helio , Interpretación de Imagen Asistida por Computador/métodos , Pulmón/anatomía & histología , Modelos Biológicos , Adulto , Anisotropía , Simulación por Computador , Femenino , Humanos , Isótopos , Campos Magnéticos , Masculino , Radiofármacos , Valores de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
NMR Biomed ; 27(12): 1490-501, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25146558

RESUMEN

Magnetic-resonance spectroscopy and imaging using hyperpolarized xenon-129 show great potential for evaluation of the most important function of the human lung -- gas exchange. In particular, chemical shift saturation recovery (CSSR) xenon-129 spectroscopy provides important physiological information for the lung as a whole by characterizing the dynamic process of gas exchange, while dissolved-phase (DP) xenon-129 imaging captures the time-averaged regional distribution of gas uptake by lung tissue and blood. Herein, we present recent advances in assessing lung function using CSSR spectroscopy and DP imaging in a total of 45 subjects (23 healthy, 13 chronic obstructive pulmonary disease (COPD) and 9 asthma). From CSSR acquisitions, the COPD subjects showed red blood cell to tissue-plasma (RBC-to-TP) ratios below the average for the healthy subjects (p < 0.001), but significantly higher septal wall thicknesses as compared with the healthy subjects (p < 0.005); the RBC-to-TP ratios for the asthmatic subjects fell outside two standard deviations (either higher or lower) from the mean of the healthy subjects, although there was no statistically significant difference for the average ratio of the study group as a whole. Similarly, from the 3D DP imaging acquisitions, we found that all the ratios (TP to gas phase (GP), RBC to GP, RBC to TP) measured in the COPD subjects were lower than those from the healthy subjects (p < 0.05 for all ratios), while these ratios in the asthmatic subjects differed considerably between subjects. Despite having been performed at different lung inflation levels, the RBC-to-TP ratios measured by CSSR and 3D DP imaging were fairly consistent with each other, with a mean difference of 0.037 (ratios from 3D DP imaging larger). In ten subjects the RBC-to-GP ratios obtained from the 3D DP imaging acquisitions were also highly correlated with their diffusing capacity of the lung for carbon monoxide per unit alveolar volume ratios measured by pulmonary function testing (R = 0.91).


Asunto(s)
Asma/fisiopatología , Pulmón/fisiopatología , Imagen por Resonancia Magnética/métodos , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Pruebas de Función Respiratoria/métodos , Adolescente , Adulto , Monóxido de Carbono/metabolismo , Simulación por Computador , Eritrocitos/metabolismo , Femenino , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Ventilación Pulmonar/fisiología , Análisis Espectral , Isótopos de Xenón , Adulto Joven
18.
NMR Biomed ; 27(12): 1542-56, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24990096

RESUMEN

The field of proton lung MRI is advancing on a variety of fronts. In the realm of functional imaging, it is now possible to use arterial spin labeling (ASL) and oxygen-enhanced imaging techniques to quantify regional perfusion and ventilation, respectively, in standard units of measurement. By combining these techniques into a single scan, it is also possible to quantify the local ventilation-perfusion ratio, which is the most important determinant of gas-exchange efficiency in the lung. To demonstrate potential for accurate and meaningful measurements of lung function, this technique was used to study gravitational gradients of ventilation, perfusion, and ventilation-perfusion ratio in healthy subjects, yielding quantitative results consistent with expected regional variations. Such techniques can also be applied in the time domain, providing new tools for studying temporal dynamics of lung function. Temporal ASL measurements showed increased spatial-temporal heterogeneity of pulmonary blood flow in healthy subjects exposed to hypoxia, suggesting sensitivity to active control mechanisms such as hypoxic pulmonary vasoconstriction, and illustrating that to fully examine the factors that govern lung function it is necessary to consider temporal as well as spatial variability. Further development to increase spatial coverage and improve robustness would enhance the clinical applicability of these new functional imaging tools. In the realm of structural imaging, pulse sequence techniques such as ultrashort echo-time radial k-space acquisition, ultrafast steady-state free precession, and imaging-based diaphragm triggering can be combined to overcome the significant challenges associated with proton MRI in the lung, enabling high-quality three-dimensional imaging of the whole lung in a clinically reasonable scan time. Images of healthy and cystic fibrosis subjects using these techniques demonstrate substantial promise for non-contrast pulmonary angiography and detailed depiction of airway disease. Although there is opportunity for further optimization, such approaches to structural lung imaging are ready for clinical testing.


Asunto(s)
Pulmón/anatomía & histología , Pulmón/fisiología , Imagen por Resonancia Magnética/métodos , Protones , Humanos , Imagenología Tridimensional , Ventilación Pulmonar/fisiología , Factores de Tiempo
19.
J Magn Reson Imaging ; 39(2): 346-59, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23681559

RESUMEN

PURPOSE: To develop a breathhold acquisition for regional mapping of ventilation and the fractions of hyperpolarized xenon-129 (Xe129) dissolved in tissue (lung parenchyma and plasma) and red blood cells (RBCs), and to perform an exploratory study to characterize data obtained in human subjects. MATERIALS AND METHODS: A three-dimensional, multi-echo, radial-trajectory pulse sequence was developed to obtain ventilation (gaseous Xe129), tissue, and RBC images in healthy subjects, smokers, and asthmatics. Signal ratios (total dissolved Xe129 to gas, tissue-to-gas, RBC-to-gas, and RBC-to-tissue) were calculated from the images for quantitative comparison. RESULTS: Healthy subjects demonstrated generally uniform values within coronal slices, and a gradient in values along the anterior-to-posterior direction. In contrast, images and associated ratio maps in smokers and asthmatics were generally heterogeneous and exhibited values mostly lower than those in healthy subjects. Whole-lung values of total dissolved Xe129 to gas, tissue-to-gas, and RBC-to-gas ratios in healthy subjects were significantly larger than those in diseased subjects. CONCLUSION: Regional maps of tissue and RBC fractions of dissolved Xe129 were obtained from a short breathhold acquisition, well tolerated by healthy volunteers and subjects with obstructive lung disease. Marked differences were observed in spatial distributions and overall amounts of Xe129 dissolved in tissue and RBCs among healthy subjects, smokers and asthmatics.


Asunto(s)
Imagenología Tridimensional/métodos , Enfermedades Pulmonares/metabolismo , Pulmón/metabolismo , Imagen por Resonancia Magnética/métodos , Intercambio Gaseoso Pulmonar , Isótopos de Xenón/farmacocinética , Administración por Inhalación , Adolescente , Adulto , Medios de Contraste/administración & dosificación , Medios de Contraste/farmacocinética , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Enfermedades Pulmonares/diagnóstico , Masculino , Tasa de Depuración Metabólica , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Distribución Tisular , Isótopos de Xenón/administración & dosificación , Adulto Joven
20.
bioRxiv ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38352349

RESUMEN

BACKGROUND: Cerebral cavernous malformations (CCM) are vascular lesions within the central nervous system, consisting of dilated and hemorrhage-prone capillaries. CCMs can cause debilitating neurological symptoms, and surgical excision or stereotactic radiosurgery are the only current treatment options. Meanwhile, transient blood-brain barrier opening (BBBO) with focused ultrasound (FUS) and microbubbles is now understood to exert potentially beneficial bioeffects, such as stimulation of neurogenesis and clearance of amyloid-ß. Here, we tested whether FUS BBBO could be deployed therapeutically to control CCM formation and progression in a clinically-representative murine model. METHODS: CCMs were induced in mice by postnatal, endothelial-specific Krit1 ablation. FUS was applied for BBBO with fixed peak-negative pressures (PNPs; 0.2-0.6 MPa) or passive cavitation detection-modulated PNPs. Magnetic resonance imaging (MRI) was used to target FUS treatments, evaluate safety, and measure longitudinal changes in CCM growth after BBBO. RESULTS: FUS BBBO elicited gadolinium accumulation primarily at the perilesional boundaries of CCMs, rather than lesion cores. Passive cavitation detection and gadolinium contrast enhancement were comparable in CCM and wild-type mice, indicating that Krit1 ablation does not confer differential sensitivity to FUS BBBO. Acutely, CCMs exposed to FUS BBBO remained structurally stable, with no signs of hemorrhage. Longitudinal MRI revealed that FUS BBBO halted the growth of 94% of CCMs treated in the study. At 1 month, FUS BBBO-treated lesions lost, on average, 9% of their pre-sonication volume. In contrast, non-sonicated control lesions grew to 670% of their initial volume. Lesion control with FUS BBBO was accompanied by a marked reduction in the area and mesenchymal appearance of Krit mutant endothelium. Strikingly, in mice receiving multiple BBBO treatments with fixed PNPs, de novo CCM formation was significantly reduced by 81%. Mock treatment plans on MRIs of patients with surgically inaccessible lesions revealed their lesions are amenable to FUS BBBO with current clinical technology. CONCLUSIONS: Our results establish FUS BBBO as a novel, non-invasive modality that can safely arrest murine CCM growth and prevent their de novo formation. As an incisionless, MR image-guided therapy with the ability to target eloquent brain locations, FUS BBBO offers an unparalleled potential to revolutionize the therapeutic experience and enhance the accessibility of treatments for CCM patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA