Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Plant Physiol ; 191(4): 2276-2287, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36708195

RESUMEN

A potential strategy to mitigate oxidative damage in plants is to increase the abundance of antioxidants, such as ascorbate (i.e. vitamin C). In Arabidopsis (A. thaliana), a rate-limiting step in ascorbate biosynthesis is a phosphorylase encoded by Vitamin C Defective 2 (VTC2). To specifically overexpress VTC2 (VTC2 OE) in pollen, the coding region was expressed using a promoter from a gene with ∼150-fold higher expression in pollen, leading to pollen grains with an eight-fold increased VTC2 mRNA. VTC2 OE resulted in a near-sterile phenotype with a 50-fold decrease in pollen transmission efficiency and a five-fold reduction in the number of seeds per silique. In vitro assays revealed pollen grains were more prone to bursting (greater than two-fold) or produced shorter, morphologically abnormal pollen tubes. The inclusion of a genetically encoded Ca2+ reporter, mCherry-GCaMP6fast (CGf), revealed pollen tubes with altered tip-focused Ca2+ dynamics and increased bursting frequency during periods of oscillatory and arrested growth. Despite these phenotypes, VTC2 OE pollen failed to show expected increases in ascorbate or reductions in reactive oxygen species, as measured using a redox-sensitive dye or a roGFP2. However, mRNA expression analyses revealed greater than two-fold reductions in mRNA encoding two enzymes critical to biosynthetic pathways related to cell walls or glyco-modifications of lipids and proteins: GDP-d-mannose pyrophosphorylase (GMP) and GDP-d-mannose 3',5' epimerase (GME). These results support a model in which the near-sterile defects resulting from VTC2 OE in pollen are associated with feedback mechanisms that can alter one or more signaling or metabolic pathways critical to pollen tube growth and fertility.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Señalización del Calcio , Polen , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fertilidad/genética , Señalización del Calcio/genética , Expresión Génica , Polen/enzimología , Polen/genética , Tubo Polínico/enzimología , Tubo Polínico/genética , Regiones Promotoras Genéticas/genética
2.
Plant Physiol ; 185(2): 441-456, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33580795

RESUMEN

Age-dependent changes in reactive oxygen species (ROS) levels are critical in leaf senescence. While H2O2-reducing enzymes such as catalases and cytosolic ASCORBATE PEROXIDASE1 (APX1) tightly control the oxidative load during senescence, their regulation and function are not specific to senescence. Previously, we identified the role of ASCORBATE PEROXIDASE6 (APX6) during seed maturation in Arabidopsis (Arabidopsis thaliana). Here, we show that APX6 is a bona fide senescence-associated gene. APX6 expression is specifically induced in aging leaves and in response to senescence-promoting stimuli such as abscisic acid (ABA), extended darkness, and osmotic stress. apx6 mutants showed early developmental senescence and increased sensitivity to dark stress. Reduced APX activity, increased H2O2 level, and altered redox state of the ascorbate pool in mature pre-senescing green leaves of the apx6 mutants correlated with the early onset of senescence. Using transient expression assays in Nicotiana benthamiana leaves, we unraveled the age-dependent post-transcriptional regulation of APX6. We then identified the coding sequence of APX6 as a potential target of miR398, which is a key regulator of copper redistribution. Furthermore, we showed that mutants of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7), the master regulator of copper homeostasis and miR398 expression, have a higher APX6 level compared with the wild type, which further increased under copper deficiency. Our study suggests that APX6 is a modulator of ROS/redox homeostasis and signaling in aging leaves that plays an important role in developmental- and stress-induced senescence programs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Ascorbato Peroxidasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Ascorbato Peroxidasas/genética , Cobre/deficiencia , Proteínas de Unión al ADN/genética , Oscuridad , Homeostasis , Peróxido de Hidrógeno/metabolismo , MicroARNs/genética , Oxidación-Reducción , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , Nicotiana/enzimología , Nicotiana/genética , Nicotiana/fisiología , Factores de Transcripción/genética
3.
J Phycol ; 57(4): 1323-1334, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33963561

RESUMEN

The plant hormone abscisic acid (ABA) coordinates responses to environmental signals with developmental changes and is important for stress resilience and crop yield. However, fundamental questions remain about how this phytohormone affects microalgal growth and stress regulation throughout the different stages of their life cycle. In this study, the effects of ABA on the physiology of the freshwater microalga Chlamydomonas reinhardtii at its different life cycle stages were investigated. Exogenously added ABA enhanced the growth and photosynthesis of C. reinhardtii during the vegetative stage. The hormone also increased the tolerance of this alga to high-salinity stress during gamete formation under nutrient depletion, as well as it extended their survival. We show that the level of reactive oxygen species (ROS) generated in the ABA-treated cells was significantly less than that in the untreated cells under inhibiting NaCl concentrations. Cell size examination showed that ABA prevents cells from forming palmella when exposed to high salinity. All together, these results suggest that ABA can support the vitality and survival of C. reinhardtii under high salt conditions.


Asunto(s)
Ácido Abscísico , Chlamydomonas reinhardtii , Animales , Estadios del Ciclo de Vida , Salinidad , Estrés Salino , Tolerancia a la Sal
4.
Plant J ; 98(5): 942-952, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30758085

RESUMEN

Sexual reproduction in flowering plants depends on the fitness of the male gametophyte during fertilization. Because pollen development is highly sensitive to hot and cold temperature extremes, reliable methods to evaluate pollen viability are important for research into improving reproductive heat stress (HS) tolerance. Here, we describe an approach to rapidly evaluate pollen viability using a reactive oxygen species (ROS) probe dichlorodihydrofluorescein diacetate (i.e. H2 DCFDA-staining) coupled with flow cytometry. In using flow cytometry to analyze mature pollen harvested from Arabidopsis and tomato flowers, we discovered that pollen distributed bimodally into 'low-ROS' and 'high-ROS' subpopulations. Pollen germination assays following fluorescence-activated cell sorting revealed that the high-ROS pollen germinated with a frequency that was 35-fold higher than the low-ROS pollen, supporting a model in which a significant fraction of a flower's pollen remains in a low metabolic or dormant state even after hydration. The ability to use flow cytometry to quantify ROS dynamics within a large pollen population was shown by dose-dependent alterations in DCF-fluorescence in response to oxidative stress or antioxidant treatments. HS treatments (35°C) increased ROS levels, which correlated with a ~60% reduction in pollen germination. These results demonstrate the potential of using flow cytometry-based approaches to investigate metabolic changes during stress responses in pollen.


Asunto(s)
Adaptación Fisiológica/fisiología , Flores/fisiología , Respuesta al Choque Térmico/fisiología , Polen/fisiología , Polinización/fisiología , Arabidopsis/citología , Arabidopsis/metabolismo , Arabidopsis/fisiología , Supervivencia Celular/fisiología , Citometría de Flujo , Flores/citología , Flores/metabolismo , Solanum lycopersicum/citología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Estrés Oxidativo/fisiología , Polen/citología , Polen/metabolismo , Tubo Polínico/citología , Tubo Polínico/metabolismo , Tubo Polínico/fisiología , Especies Reactivas de Oxígeno/metabolismo
5.
Plant J ; 90(4): 698-707, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28112437

RESUMEN

Plants show a rapid systemic response to a wide range of environmental stresses, where the signals from the site of stimulus perception are transmitted to distal organs to elicit plant-wide responses. A wide range of signaling molecules are trafficked through the plant, but a trio of potentially interacting messengers, reactive oxygen species (ROS), Ca2+ and electrical signaling ('trio signaling') appear to form a network supporting rapid signal transmission. The molecular components underlying this rapid communication are beginning to be identified, such as the ROS producing NAPDH oxidase RBOHD, the ion channel two pore channel 1 (TPC1), and glutamate receptor-like channels GLR3.3 and GLR3.6. The plant cell wall presents a plant-specific route for possible propagation of signals from cell to cell. However, the degree to which the cell wall limits information exchange between cells via transfer of small molecules through an extracellular route, or whether it provides an environment to facilitate transmission of regulators such as ROS or H+ remains to be determined. Similarly, the role of plasmodesmata as both conduits and gatekeepers for the propagation of rapid cell-to-cell signaling remains a key open question. Regardless of how signals move from cell to cell, they help prepare distant parts of the plant for impending challenges from specific biotic or abiotic stresses.


Asunto(s)
Calcio/metabolismo , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Señalización del Calcio/genética , Señalización del Calcio/fisiología , Comunicación Celular/genética , Comunicación Celular/fisiología , Raíces de Plantas/metabolismo , Plasmodesmos/metabolismo
6.
BMC Genomics ; 19(1): 549, 2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-30041596

RESUMEN

BACKGROUND: In flowering plants, the male gametophyte (pollen) is one of the most vulnerable cells to temperature stress. In Arabidopsis thaliana, a pollen-specific Cyclic Nucleotide-Gated cation Channel 16 (cngc16), is required for plant reproduction under temperature-stress conditions. Plants harboring a cncg16 knockout are nearly sterile under conditions of hot days and cold nights. To understand the underlying cause, RNA-Seq was used to compare the pollen transcriptomes of wild type (WT) and cngc16 under normal and heat stress (HS) conditions. RESULTS: Here we show that a heat-stress response (HSR) in WT pollen resulted in 2102 statistically significant transcriptome changes (≥ 2-fold changes with adjusted p-value ≤0.01), representing approximately 15% of 14,226 quantified transcripts. Of these changes, 89 corresponded to transcription factors, with 27 showing a preferential expression in pollen over seedling tissues. In contrast to WT, cngc16 pollen showed 1.9-fold more HS-dependent changes (3936 total, with 2776 differences between WT and cngc16). In a quantitative direct comparison between WT and cngc16 transcriptomes, the number of statistically significant differences increased from 21 pre-existing differences under normal conditions to 192 differences under HS. Of the 20 HS-dependent changes in WT that were most different in cngc16, half corresponded to genes encoding proteins predicted to impact cell wall features or membrane dynamics. CONCLUSIONS: Results here define an extensive HS-dependent reprogramming of approximately 15% of the WT pollen transcriptome, and identify at least 27 transcription factor changes that could provide unique contributions to a pollen HSR. The number of statistically significant transcriptome differences between WT and cngc16 increased by more than 9-fold under HS, with most of the largest magnitude changes having the potential to specifically impact cell walls or membrane dynamics, and thereby potentiate cngc16 pollen to be hypersensitive to HS. However, HS-hypersensitivity could also be caused by the extensive number of differences throughout the transcriptome having a cumulative effect on multiple cellular pathways required for tip growth and fertilization. Regardless, results here support a model in which a functional HS-dependent reprogramming of the pollen transcriptome requires a specific calcium-permeable Cyclic Nucleotide-Gated cation Channel, CNGC16.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Respuesta al Choque Térmico/genética , Polen/genética , Transcriptoma , Arabidopsis/metabolismo , Señalización del Calcio/genética , Técnicas de Inactivación de Genes , Polen/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Plant Physiol ; 172(2): 1209-1220, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27535793

RESUMEN

The default growth pattern of primary roots of land plants is directed by gravity. However, roots possess the ability to sense and respond directionally to other chemical and physical stimuli, separately and in combination. Therefore, these root tropic responses must be antagonistic to gravitropism. The role of reactive oxygen species (ROS) in gravitropism of maize and Arabidopsis (Arabidopsis thaliana) roots has been previously described. However, which cellular signals underlie the integration of the different environmental stimuli, which lead to an appropriate root tropic response, is currently unknown. In gravity-responding roots, we observed, by applying the ROS-sensitive fluorescent dye dihydrorhodamine-123 and confocal microscopy, a transient asymmetric ROS distribution, higher at the concave side of the root. The asymmetry, detected at the distal elongation zone, was built in the first 2 h of the gravitropic response and dissipated after another 2 h. In contrast, hydrotropically responding roots show no transient asymmetric distribution of ROS Decreasing ROS levels by applying the antioxidant ascorbate, or the ROS-generation inhibitor diphenylene iodonium attenuated gravitropism while enhancing hydrotropism. Arabidopsis mutants deficient in Ascorbate Peroxidase 1 showed attenuated hydrotropic root bending. Mutants of the root-expressed NADPH oxidase RBOH C, but not rbohD, showed enhanced hydrotropism and less ROS in their roots apices (tested in tissue extracts with Amplex Red). Finally, hydrostimulation prior to gravistimulation attenuated the gravistimulated asymmetric ROS and auxin signals that are required for gravity-directed curvature. We suggest that ROS, presumably H2O2, function in tuning root tropic responses by promoting gravitropism and negatively regulating hydrotropism.


Asunto(s)
Arabidopsis/fisiología , Gravitropismo/fisiología , Raíces de Plantas/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Ácido Ascórbico/farmacología , Gravitropismo/efectos de los fármacos , Gravitropismo/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopía Confocal , Mutación , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Compuestos Onio/farmacología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Tropismo/efectos de los fármacos , Tropismo/genética
8.
J Exp Bot ; 68(13): 3557-3571, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28586470

RESUMEN

Small signalling peptides have emerged as important cell to cell messengers in plant development and stress responses. However, only a few of the predicted peptides have been functionally characterized. Here, we present functional characterization of two members of the IDA-LIKE (IDL) peptide family in Arabidopsis thaliana, IDL6 and IDL7. Localization studies suggest that the peptides require a signal peptide and C-terminal processing to be correctly transported out of the cell. Both IDL6 and IDL7 appear to be unstable transcripts under post-transcriptional regulation. Treatment of plants with synthetic IDL6 and IDL7 peptides resulted in down-regulation of a broad range of stress-responsive genes, including early stress-responsive transcripts, dominated by a large group of ZINC FINGER PROTEIN (ZFP) genes, WRKY genes, and genes encoding calcium-dependent proteins. IDL7 expression was rapidly induced by hydrogen peroxide, and idl7 and idl6 idl7 double mutants displayed reduced cell death upon exposure to extracellular reactive oxygen species (ROS). Co-treatment of the bacterial elicitor flg22 with IDL7 peptide attenuated the rapid ROS burst induced by treatment with flg22 alone. Taken together, our results suggest that IDL7, and possibly IDL6, act as negative modulators of stress-induced ROS signalling in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo
9.
Plant J ; 84(4): 760-72, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26408339

RESUMEN

The acclimation of plants to changes in light intensity requires rapid responses at several different levels. These include biochemical and biophysical responses as well as alterations in the steady-state level of different transcripts and proteins. Recent studies utilizing promoter::reporter constructs suggested that transcriptional responses to changes in light intensity could occur within seconds, rates for which changes in mRNA expression are not routinely measured or functionally studied. To identify and characterize rapid changes in the steady-state level of different transcripts in response to light stress we performed RNA sequencing analysis of Arabidopsis thaliana plants subjected to light stress. Here we report that mRNA accumulation of 731 transcripts occurs as early as 20-60 sec following light stress application, and that at least five of these early response transcripts play an important biological role in the acclimation of plants to light stress. More than 20% of transcripts accumulating in plants within 20-60 sec of initiation of light stress are H2 O2 - and ABA-response transcripts, and the accumulation of several of these transcripts is inhibited by transcriptional inhibitors. In accordance with the association of rapid response transcripts with H2 O2 and ABA signaling, a mutant impaired in ABA sensing (abi-1) was found to be more tolerant to light stress, and the response of several of the rapid response transcripts was altered in mutants impaired in reactive oxygen metabolism. Our findings reveal that transcriptome reprogramming in plants could occur within seconds of initiation of abiotic stress and that this response could invoke known as well as unknown proteins and pathways.


Asunto(s)
Aclimatación/efectos de la radiación , Arabidopsis/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , ARN Mensajero/genética , Ácido Abscísico/metabolismo , Aclimatación/efectos de los fármacos , Aclimatación/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Análisis por Conglomerados , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidantes/metabolismo , Oxidantes/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN , Factores de Tiempo
10.
Plant Cell ; 25(9): 3553-69, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24038652

RESUMEN

Being sessile organisms, plants evolved sophisticated acclimation mechanisms to cope with abiotic challenges in their environment. These are activated at the initial site of exposure to stress, as well as in systemic tissues that have not been subjected to stress (termed systemic acquired acclimation [SAA]). Although SAA is thought to play a key role in plant survival during stress, little is known about the signaling mechanisms underlying it. Here, we report that SAA in plants requires at least two different signals: an autopropagating wave of reactive oxygen species (ROS) that rapidly spreads from the initial site of exposure to the entire plant and a stress-specific signal that conveys abiotic stress specificity. We further demonstrate that SAA is stress specific and that a temporal-spatial interaction between ROS and abscisic acid regulates rapid SAA to heat stress in plants. In addition, we demonstrate that the rapid ROS signal is associated with the propagation of electric signals in Arabidopsis thaliana. Our findings unravel some of the basic signaling mechanisms underlying SAA in plants and reveal that signaling events and transcriptome and metabolome reprogramming of systemic tissues in response to abiotic stress occur at a much faster rate than previously envisioned.


Asunto(s)
Ácido Abscísico/metabolismo , Aclimatación , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica , Luz , Metaboloma , Modelos Biológicos , NADPH Oxidasas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Raíces de Plantas , Plantones , Transducción de Señal , Estrés Fisiológico
11.
Microb Ecol ; 72(3): 659-68, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27450478

RESUMEN

Microbial function, composition, and distribution play a fundamental role in ecosystem ecology. The interaction between desert plants and their associated microbes is expected to greatly affect their response to changes in this harsh environment. Using comparative analyses, we studied the impact of three desert shrubs, Atriplex halimus (A), Artemisia herba-alba (AHA), and Hammada scoparia (HS), on soil- and leaf-associated microbial communities. DNA extracted from the leaf surface and soil samples collected beneath the shrubs were used to study associated microbial diversity using a sequencing survey of variable regions of bacterial 16S rRNA and fungal ribosomal internal transcribed spacer (ITS1). We found that the composition of bacterial and fungal orders is plant-type-specific, indicating that each plant type provides a suitable and unique microenvironment. The different adaptive ecophysiological properties of the three plant species and the differential effect on their associated microbial composition point to the role of adaptation in the shaping of microbial diversity. Overall, our findings suggest a link between plant ecophysiological adaptation as a "temporary host" and the biotic-community parameters in extreme xeric environments.


Asunto(s)
Biodiversidad , Biota , Clima Desértico , Consorcios Microbianos , Plantas/microbiología , Microbiología del Suelo , Adaptación Biológica , Amaranthaceae/microbiología , Artemisia/microbiología , Atriplex/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Secuencia de Bases , ADN Bacteriano , ADN de Hongos , Ecología , Ecosistema , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Israel , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Plantas/clasificación , ARN Ribosómico 16S/genética , Suelo/química , Especificidad de la Especie , Células Madre
12.
Physiol Plant ; 157(4): 422-41, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26923089

RESUMEN

To appropriately acclimate to environmental stresses, plants have to rapidly activate a specific transcriptional program. Yet, the identity and function of many of the transcriptional regulators that mediate early responses to abiotic stress stimuli is still unknown. In this work we employed the promoter of the multi-stress-responsive zinc-finger protein Zat12 in yeast one-hybrid (Y1H) screens to identify early abiotic stress-responsive transcriptional regulators. Analysis of Zat12 promoter fragments fused to luciferase underlined an approximately 200 bp fragment responsive to NaCl and to reactive oxygen species (ROS). Using these segments and others as baits against Y1H control or stress Arabidopsis prey libraries, we identified 15 potential Zat12 transcriptional regulators. Among the prominent proteins identified were known transcription factors including bZIP29 and ANAC91 as well as unknown function proteins such as a homolog of the human USB1, a U6 small nuclear RNA (snRNA) processing protein, and dormancy/auxin-associated family protein 2 (DRM2). Altered expression of Zat12 during high light stress in the knockout mutants further indicated the involvement of these proteins in the regulation of Zat12. Using a state of the art microfluidic approach we showed that AtUSB1 and DRM2 can specifically bind dsDNA and were able to identify the preferred DNA-binding motif of all four proteins. Overall, the proteins identified in this work provide an important start point for charting the earliest signaling network of Zat12 and of other genes required for acclimation to abiotic stresses.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Transducción de Señal , Factores de Transcripción/genética , Aclimatación , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Expresión Génica , Ácidos Indolacéticos/metabolismo , Estrés Oxidativo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cloruro de Sodio/metabolismo , Estrés Fisiológico , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos , Dedos de Zinc
13.
Plant Physiol ; 166(1): 370-83, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25049361

RESUMEN

A seed's ability to properly germinate largely depends on its oxidative poise. The level of reactive oxygen species (ROS) in Arabidopsis (Arabidopsis thaliana) is controlled by a large gene network, which includes the gene coding for the hydrogen peroxide-scavenging enzyme, cytosolic ASCORBATE PEROXIDASE6 (APX6), yet its specific function has remained unknown. In this study, we show that seeds lacking APX6 accumulate higher levels of ROS, exhibit increased oxidative damage, and display reduced germination on soil under control conditions and that these effects are further exacerbated under osmotic, salt, or heat stress. In addition, ripening APX6-deficient seeds exposed to heat stress displayed reduced germination vigor. This, together with the increased abundance of APX6 during late stages of maturation, indicates that APX6 activity is critical for the maturation-drying phase. Metabolic profiling revealed an altered activity of the tricarboxylic acid cycle, changes in amino acid levels, and elevated metabolism of abscisic acid (ABA) and auxin in drying apx6 mutant seeds. Further germination assays showed an impaired response of the apx6 mutants to ABA and to indole-3-acetic acid. Relative suppression of abscisic acid insensitive3 (ABI3) and ABI5 expression, two of the major ABA signaling downstream components controlling dormancy, suggested that an alternative signaling route inhibiting germination was activated. Thus, our study uncovered a new role for APX6, in protecting mature desiccating and germinating seeds from excessive oxidative damage, and suggested that APX6 modulate the ROS signal cross talk with hormone signals to properly execute the germination program in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Ascorbato Peroxidasas/metabolismo , Germinación , Estrés Oxidativo , Agua/fisiología , Ácido Abscísico/metabolismo , Expresión Génica , Calor , Ácidos Indolacéticos/metabolismo , Mutación , Especies Reactivas de Oxígeno/metabolismo , Receptor Cross-Talk
14.
Plant Physiol ; 161(2): 1010-20, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23370720

RESUMEN

Cyclic nucleotide-gated channels (CNGCs) have been implicated in diverse aspects of plant growth and development, including responses to biotic and abiotic stress, as well as pollen tube growth and fertility. Here, genetic evidence identifies CNGC16 in Arabidopsis (Arabidopsis thaliana) as critical for pollen fertility under conditions of heat stress and drought. Two independent transfer DNA disruptions of cngc16 resulted in a greater than 10-fold stress-dependent reduction in pollen fitness and seed set. This phenotype was fully rescued through pollen expression of a CNGC16 transgene, indicating that cngc16-1 and 16-2 were both loss-of-function null alleles. The most stress-sensitive period for cngc16 pollen was during germination and the initiation of pollen tube tip growth. Pollen viability assays indicate that mutant pollen are also hypersensitive to external calcium chloride, a phenomenon analogous to calcium chloride hypersensitivities observed in other cngc mutants. A heat stress was found to increase concentrations of 3',5'-cyclic guanyl monophosphate in both pollen and leaves, as detected using an antibody-binding assay. A quantitative PCR analysis indicates that cngc16 mutant pollen have attenuated expression of several heat-stress response genes, including two heat shock transcription factor genes, HsfA2 and HsfB1. Together, these results provide evidence for a heat stress response pathway in pollen that connects a cyclic nucleotide signal, a Ca(2+)-permeable ion channel, and a signaling network that activates a downstream transcriptional heat shock response.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas de Arabidopsis/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Tubo Polínico/genética , Polen/genética , Adaptación Fisiológica/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Cloruro de Calcio/farmacología , GMP Cíclico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Sequías , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Calor , Datos de Secuencia Molecular , Mutación , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polen/crecimiento & desarrollo , Polen/metabolismo , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Reproducción/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Proc Natl Acad Sci U S A ; 108(4): 1711-6, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21220338

RESUMEN

Eukaryotic organisms evolved under aerobic conditions subjecting nuclear DNA to damage provoked by reactive oxygen species (ROS). Although ROS are thought to be a major cause of DNA damage, little is known about the molecular mechanisms protecting nuclear DNA from oxidative stress. Here we show that protection of nuclear DNA in plants requires a coordinated function of ROS-scavenging pathways residing in the cytosol and peroxisomes, demonstrating that nuclear ROS scavengers such as peroxiredoxin and glutathione are insufficient to safeguard DNA integrity. Both catalase (CAT2) and cytosolic ascorbate peroxidase (APX1) play a key role in protecting the plant genome against photorespiratory-dependent H(2)O(2)-induced DNA damage. In apx1/cat2 double-mutant plants, a DNA damage response is activated, suppressing growth via a WEE1 kinase-dependent cell-cycle checkpoint. This response is correlated with enhanced tolerance to oxidative stress, DNA stress-causing agents, and inhibited programmed cell death.


Asunto(s)
Arabidopsis/genética , Daño del ADN , ADN de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascorbato Peroxidasas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromosomas de las Plantas/genética , Análisis por Conglomerados , Citoplasma/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/farmacología , Immunoblotting , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Peroxidasas/genética , Peroxidasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
J Exp Bot ; 64(1): 253-63, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23183257

RESUMEN

Reactive oxygen species play a key role in the response of plants to abiotic stress conditions. Their level is controlled in Arabidopsis thaliana by a large network of genes that includes the H(2)O(2)-scavenging enzymes cytosolic ascorbate peroxidase (APX) 1 and 2. Although the function of APX1 has been established under different growth conditions, genetic evidence for APX2 function, as well as for the mode of cooperation between APX1 and APX2, is very limited. This study characterized the response of Arabidopsis mutants deficient in APX1, APX2, and APX1/APX2 to heat, salinity, light, and oxidative stresses. The findings reveal that deficiency in APX2 resulted in a decreased tolerance to light stress, as well as an enhanced tolerance to salinity and oxidative stresses. Interestingly, plants lacking APX2 were more sensitive to heat stress at the seedling stage, but more tolerant to heat stress at the reproductive stage. Cooperation between APX1 and APX2 was evident during oxidative stress, but not during light, salinity, or heat stress. The findings demonstrate a role for APX2 in the response of plants to light, heat, salinity, and oxidative stresses. The finding that plants lacking APX2 produced more seeds under prolonged heat stress conditions suggests that redundant mechanisms activated in APX2-deficient plants during heat stress play a key role in the protection of reproductive tissues from heat-related damage. This finding is very important because heat-associated damage to reproductive tissues in different crops is a major cause for yield loss in agriculture production worldwide.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/fisiología , Ascorbato Peroxidasas/deficiencia , Citosol/enzimología , Calor , Semillas/crecimiento & desarrollo , Estrés Fisiológico , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Adaptación Fisiológica/efectos de la radiación , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Citosol/efectos de los fármacos , Citosol/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Técnicas de Inactivación de Genes , Peróxido de Hidrógeno/metabolismo , Luz , Mutación/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Estrés Oxidativo/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducción/efectos de los fármacos , Reproducción/efectos de la radiación , Plantones/efectos de los fármacos , Plantones/fisiología , Plantones/efectos de la radiación , Semillas/efectos de los fármacos , Semillas/efectos de la radiación , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de la radiación
17.
Commun Biol ; 6(1): 811, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537232

RESUMEN

Cells sense, manipulate and respond to their mechanical microenvironment in a plethora of physiological processes, yet the understanding of how cells transmit, receive and interpret environmental cues to communicate with distant cells is severely limited due to lack of tools to quantitatively infer the complex tangle of dynamic cell-cell interactions in complicated environments. We present a computational method to systematically infer and quantify long-range cell-cell force transmission through the extracellular matrix (cell-ECM-cell communication) by correlating ECM remodeling fluctuations in between communicating cells and demonstrating that these fluctuations contain sufficient information to define unique signatures that robustly distinguish between different pairs of communicating cells. We demonstrate our method with finite element simulations and live 3D imaging of fibroblasts and cancer cells embedded in fibrin gels. While previous studies relied on the formation of a visible fibrous 'band' extending between cells to inform on mechanical communication, our method detected mechanical propagation even in cases where visible bands never formed. We revealed that while contractility is required, band formation is not necessary, for cell-ECM-cell communication, and that mechanical signals propagate from one cell to another even upon massive reduction in their contractility. Our method sets the stage to measure the fundamental aspects of intercellular long-range mechanical communication in physiological contexts and may provide a new functional readout for high content 3D image-based screening. The ability to infer cell-ECM-cell communication using standard confocal microscopy holds the promise for wide use and democratizing the method.


Asunto(s)
Matriz Extracelular , Fenómenos Mecánicos , Matriz Extracelular/fisiología , Fibroblastos
18.
Plant Cell Environ ; 35(2): 259-70, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21486305

RESUMEN

The redox state of the chloroplast and mitochondria, the two main powerhouses of photosynthesizing eukaryotes, is maintained by a delicate balance between energy production and consumption, and affected by the need to avoid increased production of reactive oxygen species (ROS). These demands are especially critical during exposure to extreme environmental conditions, such as high light (HL) intensity, heat, drought or a combination of different environmental stresses. Under these conditions, ROS and redox cues, generated in the chloroplast and mitochondria, are essential for maintaining normal energy and metabolic fluxes, optimizing different cell functions, activating acclimation responses through retrograde signalling, and controlling whole-plant systemic signalling pathways. Regulation of the multiple redox and ROS signals in plants requires a high degree of coordination and balance between signalling and metabolic pathways in different cellular compartments. In this review, we provide an update on ROS and redox signalling in the context of abiotic stress responses, while addressing their role in retrograde regulation, systemic acquired acclimation and cellular coordination in plants.


Asunto(s)
Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Estrés Fisiológico/fisiología , Aclimatación/fisiología , Cloroplastos/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Fenómenos Fisiológicos de las Plantas
19.
Trends Plant Sci ; 27(3): 237-246, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34627662

RESUMEN

To ensure reproductive success, flowering plants produce an excess of pollen to fertilize a limited number of ovules. Pollen grains mature into two distinct subpopulations - those that display high metabolic activity and elevated reactive oxygen species (ROS) levels immediately after hydration (high-ROS/active), and those that maintain an extended period of dormancy with low metabolic activity (low-ROS/inactive/arrested/dormant). We propose that the dormant pollen serves as a backup to provide a second chance for successful fertilization when the 'first wave' of pollen encounters an unpredictable growth condition such as heat stress. This model provides a framework for considering the role of dormancy in reproductive stress tolerance as well as strategies for mitigating pollen thermovulnerability to daytime and night-time warming that is associated with global climate change.


Asunto(s)
Polen , Polinización , Respuesta al Choque Térmico , Óvulo Vegetal , Especies Reactivas de Oxígeno/metabolismo , Semillas/metabolismo
20.
Front Plant Sci ; 12: 672368, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093629

RESUMEN

Climate change has created an environment where heat stress conditions are becoming more frequent as temperatures continue to raise in crop production areas around the world. This situation leads to decreased crop production due to plant sensitivity to heat stress. Reproductive success is critically dependent on plants' ability to produce functional pollen grains, which are the most thermo-sensitive tissue. Flavonols are plant secondary metabolites known for their potent antioxidative activity, essential for male fertility in several species including tomato, and implicated in heat stress tolerance. Since flavonols are highly abundant in fruits of the tomato high pigment 2 (hp2) mutant, we tested the level of flavonols in pollen of this mutant, under the hypothesis that increased accumulation of flavonols would render pollen more tolerant to heat stress. Indeed, pollen from two alleles of the hp2 mutant was found to have flavonols levels increased by 18 and 280% compared with wild-type (WT) under moderate chronic heat stress (MCHS) conditions. This mutant produced on average 7.8-fold higher levels of viable pollen and displayed better germination competence under heat stress conditions. The percentage of fully seeded fruits and the number of seeds per fruit were maintained in the mutant under heat stress conditions while decreased in wild-type plants. Our results strongly suggest that increased concentrations of pollen flavonols enhance pollen thermotolerance and reproductive success under heat stress conditions. Thus, the high flavonols trait may help frame the model for improving crop resilience to heat stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA