Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Entropy (Basel) ; 26(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056908

RESUMEN

Over the past decade and a half, dynamic functional imaging has revealed low-dimensional brain connectivity measures, identified potential common human spatial connectivity states, tracked the transition patterns of these states, and demonstrated meaningful transition alterations in disorders and over the course of development. Recently, researchers have begun to analyze these data from the perspective of dynamic systems and information theory in the hopes of understanding how these dynamics support less easily quantified processes, such as information processing, cortical hierarchy, and consciousness. Little attention has been paid to the effects of psychiatric disease on these measures, however. We begin to rectify this by examining the complexity of subject trajectories in state space through the lens of information theory. Specifically, we identify a basis for the dynamic functional connectivity state space and track subject trajectories through this space over the course of the scan. The dynamic complexity of these trajectories is assessed along each dimension of the proposed basis space. Using these estimates, we demonstrate that schizophrenia patients display substantially simpler trajectories than demographically matched healthy controls and that this drop in complexity concentrates along specific dimensions. We also demonstrate that entropy generation in at least one of these dimensions is linked to cognitive performance. Overall, the results suggest great value in applying dynamic systems theory to problems of neuroimaging and reveal a substantial drop in the complexity of schizophrenia patients' brain function.

2.
Hum Brain Mapp ; 39(6): 2624-2634, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29498761

RESUMEN

Psychopathy is a personality disorder characterized by antisocial behavior, lack of remorse and empathy, and impaired decision making. The disproportionate amount of crime committed by psychopaths has severe emotional and economic impacts on society. Here we examine the neural correlates associated with psychopathy to improve early assessment and perhaps inform treatments for this condition. Previous resting-state functional magnetic resonance imaging (fMRI) studies in psychopathy have primarily focused on regions of interest. This study examines whole-brain functional connectivity and its association to psychopathic traits. Psychopathy was hypothesized to be characterized by aberrant functional network connectivity (FNC) in several limbic/paralimbic networks. Group-independent component and regression analyses were applied to a data set of resting-state fMRI from 985 incarcerated adult males. We identified resting-state networks (RSNs), estimated FNC between RSNs, and tested their association to psychopathy factors and total summary scores (Factor 1, interpersonal/affective; Factor 2, lifestyle/antisocial). Factor 1 scores showed both increased and reduced functional connectivity between RSNs from seven brain domains (sensorimotor, cerebellar, visual, salience, default mode, executive control, and attentional). Consistent with hypotheses, RSNs from the paralimbic system-insula, anterior and posterior cingulate cortex, amygdala, orbital frontal cortex, and superior temporal gyrus-were related to Factor 1 scores. No significant FNC associations were found with Factor 2 and total PCL-R scores. In summary, results suggest that the affective and interpersonal symptoms of psychopathy (Factor 1) are associated with aberrant connectivity in multiple brain networks, including paralimbic regions.


Asunto(s)
Trastorno de Personalidad Antisocial/patología , Mapeo Encefálico , Encéfalo/patología , Criminales/psicología , Adolescente , Adulto , Trastorno de Personalidad Antisocial/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Oxígeno/sangre , Análisis de Componente Principal , Índice de Severidad de la Enfermedad , Adulto Joven
3.
Neuroimage ; 163: 160-176, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28916181

RESUMEN

The past few years have seen an emergence of approaches that leverage temporal changes in whole-brain patterns of functional connectivity (the chronnectome). In this chronnectome study, we investigate the replicability of the human brain's inter-regional coupling dynamics during rest by evaluating two different dynamic functional network connectivity (dFNC) analysis frameworks using 7 500 functional magnetic resonance imaging (fMRI) datasets. To quantify the extent to which the emergent functional connectivity (FC) patterns are reproducible, we characterize the temporal dynamics by deriving several summary measures across multiple large, independent age-matched samples. Reproducibility was demonstrated through the existence of basic connectivity patterns (FC states) amidst an ensemble of inter-regional connections. Furthermore, application of the methods to conservatively configured (statistically stationary, linear and Gaussian) surrogate datasets revealed that some of the studied state summary measures were indeed statistically significant and also suggested that this class of null model did not explain the fMRI data fully. This extensive testing of reproducibility of similarity statistics also suggests that the estimated FC states are robust against variation in data quality, analysis, grouping, and decomposition methods. We conclude that future investigations probing the functional and neurophysiological relevance of time-varying connectivity assume critical importance.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen , Adolescente , Adulto , Anciano , Encéfalo/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Reproducibilidad de los Resultados , Descanso , Adulto Joven
4.
IEEE Signal Process Lett ; 23(8): 1076-1080, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28018124

RESUMEN

Patterns of resting state fMRI functional network connectivity in schizophrenia patients have been shown to differ markedly from that of healthy controls. While some studies have explored connectivity within fixed frequency bands, the question of network phase synchrony across disparate frequency bands, or cross-frequency connectivity, has remained surprisingly underexplored. Computational modeling at the neuronal scale however has long acknowledged the existence of coupled fast and slow subsystems. Here we present preliminary evidence that cross-frequency coupling exists at the network level, that it patterns in meaningful ways over functional domains, and that this patterning differs between the healthy population and individuals with diagnosed schizophrenia.

5.
Creat Nurs ; 22(1): 17-23, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30188302

RESUMEN

Babywearing is defined as the act or practice of keeping an infant close to an adult's torso by using a supporting device that straps to the front of the adult's body (Merriam-Webster, n.d.). The practice of babywearing as an adjunct to therapy is likely to be beneficial to children and caregivers. Although research on babywearing is limited, the therapeutic benefits of "skin-to-skin care" or "kangaroo care" have been empirically established. Building on this research, this article attempts to raise awareness about babywearing by elucidating the likely therapeutic benefits for children with disabilities or special needs and areas for future research.


Asunto(s)
Método Madre-Canguro , Ansiedad/prevención & control , Humanos , Lactante , Recién Nacido , Relaciones Interpersonales , Desarrollo del Lenguaje , Desarrollo de Músculos , Apego a Objetos , Dolor/prevención & control
6.
Neuroimage ; 107: 85-94, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25485713

RESUMEN

Functional connectivity analysis of the human brain is an active area in fMRI research. It focuses on identifying meaningful brain networks that have coherent activity either during a task or in the resting state. These networks are generally identified either as collections of voxels whose time series correlate strongly with a pre-selected region or voxel, or using data-driven methodologies such as independent component analysis (ICA) that compute sets of maximally spatially independent voxel weightings (component spatial maps (SMs)), each associated with a single time course (TC). Studies have shown that regardless of the way these networks are defined, the activity coherence among them has a dynamic nature which is hard to estimate with global coherence analysis such as correlation or mutual information. Sliding window analyses in which functional network connectivity (FNC) is estimated separately at each time window is one of the more widely employed approaches to studying the dynamic nature of functional network connectivity (dFNC). Observed FNC patterns are summarized and replaced with a smaller set of prototype connectivity patterns ("states" or "components"), and then a dynamical analysis is applied to the resulting sequences of prototype states. In this work we are looking for a small set of connectivity patterns whose weighted contributions to the dynamically changing dFNCs are independent of each other in time. We discuss our motivation for this work and how it differs from existing approaches. Also, in a group analysis based on gender we show that males significantly differ from females by occupying significantly more combinations of these connectivity patterns over the course of the scan.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Descanso/fisiología , Adolescente , Adulto , Algoritmos , Niño , Análisis por Conglomerados , Simulación por Computador , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Caracteres Sexuales , Adulto Joven
7.
Neuroimage ; 120: 133-42, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26162552

RESUMEN

Many approaches for estimating functional connectivity among brain regions or networks in fMRI have been considered in the literature. More recently, studies have shown that connectivity which is usually estimated by calculating correlation between time series or by estimating coherence as a function of frequency has a dynamic nature, during both task and resting conditions. Sliding-window methods have been commonly used to study these dynamic properties although other approaches such as instantaneous phase synchronization have also been used for similar purposes. Some studies have also suggested that spectral analysis can be used to separate the distinct contributions of motion, respiration and neurophysiological activity from the observed correlation. Several recent studies have merged analysis of coherence with study of temporal dynamics of functional connectivity though these have mostly been limited to a few selected brain regions and frequency bands. Here we propose a novel data-driven framework to estimate time-varying patterns of whole-brain functional network connectivity of resting state fMRI combined with the different frequencies and phase lags at which these patterns are observed. We show that this analysis identifies both broad-band cluster centroids that summarize connectivity patterns observed in many frequency bands, as well as clusters consisting only of functional network connectivity (FNC) from a narrow range of frequencies along with associated phase profiles. The value of this approach is demonstrated by its ability to reveal significant group differences in males versus females regarding occupancy rates of cluster that would not be separable without considering the frequencies and phase lags. The method we introduce provides a novel and informative framework for analyzing time-varying and frequency specific connectivity which can be broadly applied to the study of the healthy and diseased human brain.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/fisiología , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Adulto Joven
8.
Neuroimage ; 107: 345-355, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25514514

RESUMEN

Graph theory-based analysis has been widely employed in brain imaging studies, and altered topological properties of brain connectivity have emerged as important features of mental diseases such as schizophrenia. However, most previous studies have focused on graph metrics of stationary brain graphs, ignoring that brain connectivity exhibits fluctuations over time. Here we develop a new framework for accessing dynamic graph properties of time-varying functional brain connectivity in resting-state fMRI data and apply it to healthy controls (HCs) and patients with schizophrenia (SZs). Specifically, nodes of brain graphs are defined by intrinsic connectivity networks (ICNs) identified by group independent component analysis (ICA). Dynamic graph metrics of the time-varying brain connectivity estimated by the correlation of sliding time-windowed ICA time courses of ICNs are calculated. First- and second-level connectivity states are detected based on the correlation of nodal connectivity strength between time-varying brain graphs. Our results indicate that SZs show decreased variance in the dynamic graph metrics. Consistent with prior stationary functional brain connectivity works, graph measures of identified first-level connectivity states show lower values in SZs. In addition, more first-level connectivity states are disassociated with the second-level connectivity state which resembles the stationary connectivity pattern computed by the entire scan. Collectively, the findings provide new evidence about altered dynamic brain graphs in schizophrenia, which may underscore the abnormal brain performance in this mental illness.


Asunto(s)
Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Esquizofrenia/patología , Adolescente , Adulto , Anciano , Algoritmos , Mapeo Encefálico , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Vías Nerviosas/patología , Adulto Joven
9.
Front Psychiatry ; 15: 1165424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495909

RESUMEN

Introduction: Dynamic functional network connectivity (dFNC) analysis of resting state functional magnetic resonance imaging data has yielded insights into many neurological and neuropsychiatric disorders. A common dFNC analysis approach uses hard clustering methods like k-means clustering to assign samples to states that summarize network dynamics. However, hard clustering methods obscure network dynamics by assuming (1) that all samples within a cluster are equally like their assigned centroids and (2) that samples closer to one another in the data space than to their centroids are well-represented by their centroids. In addition, it can be hard to compare subjects, as in some cases an individual may not manifest a state strongly enough to enter a hard cluster. Approaches that allow a dimensional approach to connectivity patterns (e.g., fuzzy clustering) can mitigate these issues. In this study, we present an explainable fuzzy clustering framework by combining fuzzy c-means clustering with several explainability metrics and novel summary features. Methods: We apply our framework for schizophrenia (SZ) default mode network analysis. Namely, we extract dFNC from individuals with SZ and controls, identify 5 dFNC states, and characterize the dFNC features most crucial to those states with a new perturbation-based clustering explainability approach. We then extract several features typically used in hard clustering and further present a variety of unique features specially designed for use with fuzzy clustering to quantify state dynamics. We examine differences in those features between individuals with SZ and controls and further search for relationships between those features and SZ symptom severity. Results: Importantly, we find that individuals with SZ spend more time in states of moderate anticorrelation between the anterior and posterior cingulate cortices and strong anticorrelation between the precuneus and anterior cingulate cortex. We further find that individuals with SZ tend to transition more rapidly than controls between low-magnitude and high-magnitude dFNC states. Conclusion: We present a novel dFNC analysis framework and use it to identify effects of SZ upon network dynamics. Given the ease of implementing our framework and its enhanced insight into network dynamics, it has great potential for use in future dFNC studies.

10.
bioRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38405889

RESUMEN

The diagnosis of schizophrenia (SZ) can be challenging due to its diverse symptom presentation. As such, many studies have sought to identify diagnostic biomarkers of SZ using explainable machine learning methods. However, the generalizability of identified biomarkers in many machine learning-based studies is highly questionable given that most studies only analyze explanations from a small number of models. In this study, we present (1) a novel feature interaction-based explainability approach and (2) several new approaches for summarizing multi-model explanations. We implement our approach within the context of electroencephalogram (EEG) spectral power data. We further analyze both training and test set explanations with the goal of extracting generalizable insights from the models. Importantly, our analyses identify effects of SZ upon the α, ß, and θ frequency bands, the left hemisphere of the brain, and interhemispheric interactions across a majority of folds. We hope that our analysis will provide helpful insights into SZ and inspire the development of robust approaches for identifying neuropsychiatric disorder biomarkers from explainable machine learning models.

11.
bioRxiv ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38562835

RESUMEN

Deep learning methods are increasingly being applied to raw electroencephalogram (EEG) data. However, if these models are to be used in clinical or research contexts, methods to explain them must be developed, and if these models are to be used in research contexts, methods for combining explanations across large numbers of models must be developed to counteract the inherent randomness of existing training approaches. Model visualization-based explainability methods for EEG involve structuring a model architecture such that its extracted features can be characterized and have the potential to offer highly useful insights into the patterns that they uncover. Nevertheless, model visualization-based explainability methods have been underexplored within the context of multichannel EEG, and methods to combine their explanations across folds have not yet been developed. In this study, we present two novel convolutional neural network-based architectures and apply them for automated major depressive disorder diagnosis. Our models obtain slightly lower classification performance than a baseline architecture. However, across 50 training folds, they find that individuals with MDD exhibit higher ß power, potentially higher δ power, and higher brain-wide correlation that is most strongly represented within the right hemisphere. This study provides multiple key insights into MDD and represents a significant step forward for the domain of explainable deep learning applied to raw EEG. We hope that it will inspire future efforts that will eventually enable the development of explainable EEG deep learning models that can contribute both to clinical care and novel medical research discoveries.

12.
bioRxiv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38948857

RESUMEN

Schizophrenia (SZ) patients exhibit abnormal static and dynamic functional connectivity across various brain domains. We present a novel approach based on static and dynamic inter-network connectivity entropy (ICE), which represents the entropy of a given network's connectivity to all the other brain networks. This novel approach enables the investigation of how connectivity strength is heterogeneously distributed across available targets in both SZ patients and healthy controls. We analyzed fMRI data from 151 schizophrenia patients and demographically matched 160 healthy controls. Our assessment encompassed both static and dynamic ICE, revealing significant differences in the heterogeneity of connectivity levels across available brain networks between SZ patients and healthy controls (HC). These networks are associated with subcortical (SC), auditory (AUD), sensorimotor (SM), visual (VIS), cognitive control (CC), default mode network (DMN) and cerebellar (CB) functional brain domains. Elevated ICE observed in individuals with SZ suggests that patients exhibit significantly higher randomness in the distribution of time-varying connectivity strength across functional regions from each source network, compared to healthy control group. C-means fuzzy clustering analysis of functional ICE correlation matrices revealed that SZ patients exhibit significantly higher occupancy weights in clusters with weak, low-scale functional entropy correlation, while the control group shows greater occupancy weights in clusters with strong, large-scale functional entropy correlation. k-means clustering analysis on time-indexed ICE vectors revealed that cluster with highest ICE have higher occupancy rates in SZ patients whereas clusters characterized by lowest ICE have larger occupancy rates for control group. Furthermore, our dynamic ICE approach revealed that it appears healthy for a brain to primarily circulate through complex, less structured connectivity patterns, with occasional transitions into more focused patterns. However, individuals with SZ seem to struggle with transiently attaining these more focused and structured connectivity patterns. Proposed ICE measure presents a novel framework for gaining deeper insights into understanding mechanisms of healthy and disease brain states and a substantial step forward in the developing advanced methods of diagnostics of mental health conditions.

13.
bioRxiv ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38712056

RESUMEN

A common analysis approach for resting state functional magnetic resonance imaging (rs-fMRI) dynamic functional network connectivity (dFNC) data involves clustering windowed correlation time-series and assigning time windows to clusters (i.e., states) that can be quantified to summarize aspects of the dFNC dynamics. However, those methods can be dominated by a select few features and obscure key dynamics related to less dominant features. This study presents an iterative feature learning approach to identify a maximally significant and minimally complex subset of dFNC features within the default mode network (DMN) in schizophrenia (SZ). Utilizing dFNC data from individuals with SZ and healthy controls (HC), our approach uncovers a subset of features that has a greater number of dFNC states with disorder-related dynamics than is found when all features are present in the clustering. We find that anterior cingulate cortex/posterior cingulate cortex (ACC/PCC) interactions are consistently related to SZ across the most significant iterations of the feature learning analysis and that individuals with SZ tend to spend more time in states with greater intra-ACC anticorrelation and almost no time in a state of high intra-ACC correlation that HCs periodically enter. Our findings highlight the need for nuanced analyses to reveal disorder-related dynamics and advance our understanding of neuropsychiatric disorders.

14.
bioRxiv ; 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36824777

RESUMEN

Dynamic functional network connectivity (dFNC) analysis of resting state functional magnetic resonance imaging data has yielded insights into many neurological and neuropsychiatric disorders. A common dFNC analysis approach uses hard clustering methods like k-means clustering to assign samples to states that summarize network dynamics. However, hard clustering methods obscure network dynamics by assuming (1) that all samples within a cluster are equally like their assigned centroids and (2) that samples closer to one another in the data space than to their centroids are well-represented by their centroids. In addition, it can be hard to compare subjects, as in some cases an individual may not manifest a state strongly enough to enter a hard cluster. Approaches that allow a dimensional approach to connectivity patterns (e.g., fuzzy clustering) can mitigate these issues. In this study, we present an explainable fuzzy clustering framework by combining fuzzy c-means clustering with several explainability metrics. We apply our framework for schizophrenia (SZ) default mode network analysis, identifying 5 states and characterizing those states with a new explainability approach. While also showing that features typically used in hard clustering can be extracted in our framework, we present a variety of unique features to quantify state dynamics and identify effects of SZ upon network dynamics. We further uncover relationships between symptom severity and interactions of the precuneus with the anterior and posterior cingulate cortex. Given the ease of implementing our framework and its enhanced insight into network dynamics, it has great potential for use in future dFNC studies.

15.
bioRxiv ; 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36778353

RESUMEN

Resting state functional magnetic resonance imaging (rs-fMRI) dynamic functional network connectivity (dFNC) analysis has illuminated brain network interactions across many neuropsychiatric disorders. A common analysis approach involves using hard clustering methods to identify transitory states of brain activity, and in response to this, other methods have been developed to quantify the importance of specific dFNC interactions to identified states. Some of these methods involve perturbing individual features and examining the number of samples that switch states. However, only a minority of samples switch states. As such, these methods actually identify the importance of dFNC features to the clustering of a subset of samples rather than the overall clustering. In this study, we present a novel approach that more capably identifies the importance of each feature to the overall clustering. Our approach uses fuzzy clustering to output probabilities of each sample belonging to states and then measures their Kullback-Leibler divergence after perturbation. We show the viability of our approach in the context of schizophrenia (SZ) default mode network analysis, identifying significant differences in state dynamics between individuals with SZ and healthy controls. We further compare our approach with an existing approach, showing that it captures the effects of perturbation upon most samples. We also find that interactions between the posterior cingulate cortex (PCC) and the anterior cingulate cortex and the PCC and precuneus are important across methods. We expect that our novel explainable clustering approach will enable further progress in rs-fMRI analysis and to other clustering applications.

16.
Artículo en Inglés | MEDLINE | ID: mdl-37035832

RESUMEN

The field of neuroimaging has increasingly sought to develop artificial intelligence-based models for neurological and neuropsychiatric disorder automated diagnosis and clinical decision support. However, if these models are to be implemented in a clinical setting, transparency will be vital. Two aspects of transparency are (1) confidence estimation and (2) explainability. Confidence estimation approaches indicate confidence in individual predictions. Explainability methods give insight into the importance of features to model predictions. In this study, we integrate confidence estimation and explainability approaches for the first time. We demonstrate their viability for schizophrenia diagnosis using resting state functional magnetic resonance imaging (rs-fMRI) dynamic functional network connectivity (dFNC) data. We compare two confidence estimation approaches: Monte Carlo dropout (MCD) and MC batch normalization (MCBN). We combine them with two gradient-based explainability approaches, saliency and layer-wise relevance propagation (LRP), and examine their effects upon explanations. We find that MCD often adversely affects model gradients, making it ill-suited for integration with gradient-based explainability methods. In contrast, MCBN does not affect model gradients. Additionally, we find many participant-level differences between regular explanations and the distributions of explanations for combined explainability and confidence estimation approaches. This suggests that a similar confidence estimation approach used in a clinical context with explanations only output for the regular model would likely not yield adequate explanations. We hope that our findings will provide a starting point for the integration of the two fields, provide useful guidance for future studies, and accelerate the development of transparent neuroimaging clinical decision support systems.

17.
Artículo en Inglés | MEDLINE | ID: mdl-38083012

RESUMEN

Identifying subtypes of neuropsychiatric disorders based on characteristics of their brain activity has tremendous potential to contribute to a better understanding of those disorders and to the development of new diagnostic and personalized treatment approaches. Many studies focused on neuropsychiatric disorders examine the interaction of brain networks over time using dynamic functional network connectivity (dFNC) extracted from resting-state functional magnetic resonance imaging data. Some of these studies involve the use of either deep learning classifiers or traditional clustering approaches, but usually not both. In this study, we present a novel approach for subtyping individuals with neuropsychiatric disorders within the context of schizophrenia (SZ). We trained an explainable deep learning classifier to differentiate between dFNC data from individuals with SZ and controls, obtaining a test accuracy of 79%. We next used cross-validation to obtain robust average explanations for SZ training participants across folds, identifying 5 SZ subtypes that each differed from controls in a distinct manner and that had different degrees of symptom severity. These subtypes specifically differed from one another in their interactions between the visual network and the subcortical, sensorimotor, and auditory networks and between the cerebellar network and the cognitive control and subcortical networks. Additionally, we uncovered statistically significant differences in negative symptom scores between the subtypes. It is our hope that the proposed novel subtyping approach will contribute to the improved understanding and characterization of SZ and other neuropsychiatric disorders.


Asunto(s)
Aprendizaje Profundo , Esquizofrenia , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo , Mapeo Encefálico/métodos , Esquizofrenia/diagnóstico
18.
Artículo en Inglés | MEDLINE | ID: mdl-38083298

RESUMEN

While analysis of temporal signal fluctuations has long been a fixture of blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) research, the role of spatially localized directional diffusion in both signal propagation and emergent large-scale functional integration remains almost entirely neglected. We are proposing an extensible framework to capture and analyze spatially localized fMRI directional signal flow dynamics. The approach is validated in a large resting-state fMRI schizophrenia study where it uncovers significant and novel relationships between hyperlocal spatial dynamics and subject diagnostic status.


Asunto(s)
Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Esquizofrenia/diagnóstico por imagen , Descanso , Encéfalo/diagnóstico por imagen
19.
Artículo en Inglés | MEDLINE | ID: mdl-38083353

RESUMEN

Resting state functional magnetic resonance imaging (rs-fMRI) dynamic functional network connectivity (dFNC) analysis has illuminated brain network interactions across many neuropsychiatric disorders. A common analysis approach involves using hard clustering methods to identify transitory states of brain activity, and in response to this, other methods have been developed to quantify the importance of specific dFNC interactions to identified states. Some of these methods involve perturbing individual features and examining the number of samples that switch states. However, only a minority of samples switch states. As such, these methods actually identify the importance of dFNC features to the clustering of a subset of samples rather than the overall clustering. In this study, we present a novel approach that more capably identifies the importance of each feature to the overall clustering. Our approach uses fuzzy clustering to output probabilities of each sample belonging to states and then measures their Kullback-Leibler divergence after perturbation. We show the viability of our approach in the context of schizophrenia (SZ) default mode network analysis, identifying significant differences in state dynamics between individuals with SZ and healthy controls. We further compare our approach with an existing approach, showing that it captures the effects of perturbation upon most samples. We also find that interactions between the posterior cingulate cortex (PCC) and the anterior cingulate cortex and the PCC and precuneus are important across methods. We expect that our novel explainable clustering approach will enable further progress in rs-fMRI analysis and to other clustering applications.


Asunto(s)
Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Análisis por Conglomerados
20.
Artículo en Inglés | MEDLINE | ID: mdl-38083554

RESUMEN

Machine learning methods have frequently been applied to electroencephalography (EEG) data. However, while supervised EEG classification is well-developed, relatively few studies have clustered EEG, which is problematic given the potential for clustering EEG to identify novel subtypes or patterns of dynamics that could improve our understanding of neuropsychiatric disorders. There are established methods for clustering EEG using manually extracted features that reduce the richness of the feature space for clustering, but only a couple studies have sought to use deep learning-based approaches with automated feature learning to cluster EEG. Those studies involve separately training an autoencoder and then performing clustering on the extracted features, and the separation of those steps can lead to poor quality clustering. In this study, we propose an explainable convolutional autoencoder-based approach that combines model training with clustering to yield high quality clusters. We apply the approach within the context of schizophrenia (SZ), identifying 8 EEG states characterized by varying levels of δ activity. We also find that individuals who spend more time outside of the dominant state tend to have increased negative symptom severity. Our approach represents a significant step forward for clustering resting-state EEG data and has the potential to lead to novel findings across a variety of neurological and neuropsychological disorders in future years.


Asunto(s)
Electroencefalografía , Esquizofrenia , Humanos , Electroencefalografía/métodos , Aprendizaje Automático , Análisis por Conglomerados , Esquizofrenia/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA