RESUMEN
Species' persistence in increasingly variable climates will depend on resilience against the fitness costs of environmental stochasticity. Most organisms host microbiota that shield against stressors. Here, we test the hypothesis that, by limiting exposure to temporally variable stressors, microbial symbionts reduce hosts' demographic variance. We parameterized stochastic population models using data from a 14-year symbiont-removal experiment including seven grass species that host Epichloë fungal endophytes. Results provide novel evidence that symbiotic benefits arise not only through improved mean fitness, but also through dampened inter-annual variance. Hosts with "fast" life-history traits benefited most from symbiont-mediated demographic buffering. Under current climate conditions, contributions of demographic buffering were modest compared to benefits to mean fitness. However, simulations of increased stochasticity amplified benefits of demographic buffering and made it the more important pathway of host-symbiont mutualism. Microbial-mediated variance buffering is likely an important, yet cryptic, mechanism of resilience in an increasingly variable world.
Asunto(s)
Epichloe , Procesos Estocásticos , Simbiosis , Epichloe/fisiología , Poaceae/microbiología , Poaceae/fisiología , Endófitos/fisiología , Modelos Biológicos , MicrobiotaRESUMEN
Goji berries (Lycium barbarum and L. chinense) have a rich historical significance in traditional Chinese medicine and have gained popularity as a superfood in Western cultures. From 2021 to 2023, powdery mildew was observed on goji plants of both species in community and residential gardens in Yolo County, California (U.S.A.). Disease severity varied from 20 to 100% of infected leaves per plant. Powdery mildew was characterized by the presence of white fungal colonies on both sides of leaves and fruit sepals. Additionally, a brownish discoloration was observed in infected mature leaves, resulting in further defoliation. Morphologically, the fungus matched the description of Arthrocladiella mougeotii. The pathogen identity was confirmed by phylogenetic analyses of the rDNA internal transcribed spacer and the 28S rDNA gene sequences. Pathogenicity was confirmed by inoculating healthy L. barbarum plants using infected leaves and successfully reproducing powdery mildew symptoms after 28 days (22°C, 60% RH), with A. mougeotii colonies confirmed by morphology. Control leaves remained symptomless. Coinfection with Phyllactinia chubutiana was detected on plants from two separate gardens, with A. mougeotii observed first in late spring (May to June) and P. chubutiana later in the summer (July to August). These results revealed that both A. mougeotii and P. chubutiana constitute causal agents of powdery mildew on goji berry plants, often infecting the same plant tissues simultaneously. To our knowledge, this is the first report of A. mougeotii causing powdery mildew on L. barbarum and L. chinense in California, which provides a better understanding of the etiology of powdery mildew of goji plants.
Asunto(s)
Ascomicetos , Lycium , Filogenia , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , California , Ascomicetos/fisiología , Ascomicetos/genética , Lycium/microbiología , Hojas de la Planta/microbiología , Frutas/microbiología , ADN de Hongos/genética , Phyllachorales/genética , Phyllachorales/fisiologíaRESUMEN
Goji berries, both Lycium barbarum, and L. chinense, are native to Asia and have been highly valued for food and medicinal purposes for more than 2,000 years (Wetters et al. 2018). These species are difficult to distinguish due to the extensive cultivar development of the former and the plasticity of the latter's phenotypes. During the summers (from July to September) of 2021 and 2022, powdery mildew was observed in Goji berry plants (L. barbarum and L. chinense) in both community and residential gardens, in Yolo Co., California. Disease severity varied between 30 and 100% of infected leaves per plant. Host identity was confirmed by phylogenetic analysis using sequences of the psbA-trnH intergenic region (Wetters et al. 2018). Powdery mildew was characterized by the presence of white fungal colonies on both sides of the leaves and the fruit sepals. Colorless adhesive tape mounts of the fungal structures were examined in drops of 3% KOH. Epidermal strips of infected leaves were peeled off for analysis of the mycelia. Hyphae were both external and internal, hyaline, septate, branched, smooth, and 2.5 to 5.8 (4.3) µm wide (n = 50). Appressoria were nipple-shaped to irregularly branched and solitary or opposite in pairs. Conidiophores were hyaline, erect, and simple. Foot cells were cylindrical, straight, 13.1 to 48.9 (29.8) × 5.0 to 8.2 (6.8) µm (n = 20), followed by 0 to 2 cells. Conidia lacked fibrosin bodies, were borne singly, unicellular, hyaline, and ellipsoid when young. Mature conidia were either cylindrical or slightly centrally constricted to dumb-bell-like, and 36.2 to 51.8 (44.9) × 15.1 to 22.0 (18.9) µm (n = 50), with conspicuous subterminal protuberances. Germ tubes were subterminal, either short with multilobate apex or moderately long with a simple end. Chasmothecia were not observed. Morphologically the fungus matched the description of Phyllactinia chubutiana Havryl., S. Takam. & U. Braun (Braun and Cook, 2012). The pathogen identity was further confirmed by amplifying and sequencing the rDNA internal transcribed spacer (ITS) and the 28S rDNA gene using the primer pairs ITS1/ITS4 (White et al. 1990) and PM3/TW14 (Takamatsu and Kano 2001, Mori et al. 2000). The resulting sequences (GenBank OP434568 to OP434569; and OP410969 to OP410970) were compared with the NCBI database using BLAST, showing 99% similarity to the ex-type isolate of P. chubutiana (BCRU 4634, GenBank AB243690). Maximum parsimony phylogenetic analysis clustered our isolates with reference sequences of P. chubutiana from various hosts deposited in GenBank. Pathogenicity was confirmed by inoculating two two-year-old L. barbarum potted plants. Four leaves per plant were surface disinfected (75% ethanol, 30 s) before gently rubbing powdery mildew infected leaves onto healthy leaves. Healthy leaves were used for mock inoculations. All plants were maintained in a growth chamber at 22°C and 80% relative humidity (RH) for five days and then 60% RH thereafter. Inoculated leaves developed powdery mildew symptoms after 28 days, and P. chubutiana colonies were confirmed by morphology, hence fulfilling Koch's postulates. Control leaves remained symptomless. Phyllactinia chubutiana (= Oidium insolitum, Ovulariopsis insolita) was first described on L. chilense in Argentina (Braun et al. 2000, Havrylenko et al. 2006), and later reported on L. chinense in China (Wang Yan et al. 2016). To our knowledge, this is the first report of P. chubutiana causing powdery mildew on L. barbarum and L. chinense in the United States, which provides crucial information for developing effective strategies to monitor and control this newly described disease.
RESUMEN
AbstractUnderstanding the mechanisms that generate biogeographic range limits is a long-standing goal of ecology. It is widely hypothesized that distributional limits reflect the environmental niche, but this hypothesis is complicated by the potential for intraspecific niche heterogeneity. In dioecious species, sexual niche differentiation may cause divergence between the sexes in their limits of environmental suitability. We studied range boundary formation in Texas bluegrass (Poa arachnifera), a perennial dioecious plant, testing the alternative hypotheses that range limits reflect the niche limits of females only versus the combined contributions of females and males, including their interdependence via mating. Common garden experiments across a longitudinal aridity gradient revealed female-biased flowering approaching eastern range limits, suggesting that mate limitation may constrain the species' distribution. However, a demographic model showed that declines in λ approaching range limits were driven almost entirely by female vital rates. The dominant role of females was attributable to seed viability being robust to sex ratio variation and to low sensitivity of λ to reproductive transitions. We suggest that female-dominant range limits may be common to long-lived species with polygamous mating systems and that female responses to environmental drivers may often be sufficient for predicting range shifts in response to environmental change.
Asunto(s)
Poa , Ecosistema , Plantas , Razón de Masculinidad , TexasRESUMEN
As cities expand, understanding how urbanization affects biodiversity is a key ecological goal. Yet, little is known about how host-associated microbial diversity responds to urbanization. We asked whether communities of microbial (bacterial and fungal) in floral nectar and sugar-water feeders and vectored by nectar-feeding birds-thus forming a metacommunity-differed in composition and diversity between suburban and rural gardens. Compared to rural birds, we found that suburban birds vectored different and more diverse bacterial communities. These differences were not detected in the nectar of common plant species, suggesting that nectar filters microbial taxa and results in metacommunity convergence. However, when considering all the nectar sources present, suburban beta diversity was elevated compared to rural beta diversity due to turnover of bacterial taxa across a plant species and sugar-water feeders. While fungal metacommunity composition and beta diversity in nectar were similar between suburban and rural sites, alpha diversity was elevated in suburban sites, which mirrored the trend of increased fungal alpha diversity on birds. These results emphasize the interdependence of host, vector, and microbial diversity and demonstrate that human decisions can shape nectar microbial diversity in contrasting ways for bacteria and fungi.
Asunto(s)
Jardines , Néctar de las Plantas , Animales , Humanos , Aves , Biodiversidad , Bacterias/genética , Plantas , Azúcares , AguaRESUMEN
Although rarely experimentally tested, biotic interactions have long been hypothesised to limit low-elevation range boundaries of species. We tested the effects of herbivory on three alpine-restricted plant species by transplanting plants below (novel), at the edge (limit), or in the centre (core) of their current elevational range and factorially fencing-out above- and belowground mammals. Herbivore damage was greater in range limit and novel habitats than in range cores. Exclosures increased plant biomass and reproduction more in novel habitats than in range cores, suggesting demographic costs of novel interactions with herbivores. We then used demographic models to project population growth rates, which increased 5-20% more under herbivore exclosure at range limit and novel sites than in core habitats. Our results identify mammalian herbivores as key drivers of the low-elevation range limits of alpine plants and indicate that upward encroachment of herbivores could trigger local extinctions by depressing plant population growth.
Asunto(s)
Herbivoria , Plantas , Animales , Biomasa , Ecosistema , MamíferosRESUMEN
Understanding the effects of climate on the vital rates (e.g., survival, development, reproduction) and dynamics of natural populations is a long-standing quest in ecology, with ever-increasing relevance in the face of climate change. However, linking climate drivers to demographic processes requires identifying the appropriate time windows during which climate influences vital rates. Researchers often do not have access to the long-term data required to test a large number of windows, and are thus forced to make a priori choices. In this study, we first synthesize the literature to assess current a priori choices employed in studies performed on 104 plant species that link climate drivers with demographic responses. Second, we use a sliding-window approach to investigate which combination of climate drivers and temporal window have the best predictive ability for vital rates of four perennial plant species that each have over a decade of demographic data (Helianthella quinquenervis, Frasera speciosa, Cylindriopuntia imbricata, and Cryptantha flava). Our literature review shows that most studies consider time windows in only the year preceding the measurement of the vital rate(s) of interest, and focus on annual or growing season temporal scales. In contrast, our sliding-window analysis shows that in only four out of 13 vital rates the selected climate drivers have time windows that align with, or are similar to, the growing season. For many vital rates, the best window lagged more than 1 year and up to 4 years before the measurement of the vital rate. Our results demonstrate that for the vital rates of these four species, climate drivers that are lagged or outside of the growing season are the norm. Our study suggests that considering climatic predictors that fall outside of the most recent growing season will improve our understanding of how climate affects population dynamics.
Asunto(s)
Cambio Climático , Plantas , Dinámica Poblacional , Estaciones del AñoRESUMEN
Alpha galactosidase (a-Gal) is an acidic hydrolase that plays a critical role in hydrolyzing the terminal alpha-galactoyl moiety from glycolipids and glycoproteins. There are over a hundred mutations reported for the GLA gene that encodes a-Gal that result in reduced protein synthesis, protein instability, and reduction in function. The deficiencies of a-Gal can cause Fabry disease, a rare lysosomal storage disorder (LSD) caused by the failure to catabolize alpha-d-galactoyl glycolipid moieties. The current standard of care for Fabry disease is enzyme replacement therapy (ERT) where the purified recombinant form of human a-Gal is given to patients. The manufacture of a-Gal is currently performed utilizing traditional large-scale chromatography processes. Developing an affinity resin for the purification of a-Gal would reduce the complexity of the manufacturing process, reduce costs, and potentially produce a higher quality a-Gal. After the evaluation of many small molecules, a commercially available small molecule biomimetic, N-5-Carboxypentyl-1-deoxygalactonojirimycin (N5C-DGJ), was utilized for the development of a novel small molecule biomimetic affinity resin for a-Gal. Affinity purified a-Gal demonstrated a purity greater than 90%, exhibited expected thermal stability and specific activity. Complementing this affinity purification is the development of an elution buffer system that confers an increased thermal stability to a-Gal. The N5C-DGJ affinity resin tolerated sodium hydroxide sanitization with no loss of binding capacity, making it amenable to large scale purification processes and potential use in manufacturing. This novel method for purifying the challenging a-Gal enzyme can be extended to other enzyme replacement therapies.
Asunto(s)
Cromatografía de Afinidad/métodos , Clonación Molecular/métodos , Galactosa/química , Iminopiranosas/química , Animales , Células CHO , Cricetulus , Estabilidad de Enzimas , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , alfa-Galactosidasa/genética , alfa-Galactosidasa/metabolismoRESUMEN
Spreading populations are subject to evolutionary processes acting on dispersal and reproduction that can increase invasion speed and variability. It is typically assumed that dispersal and demography traits evolve independently, but abundant evidence points to correlations between them that may be positive or negative and genetic, maternal, or environmental. We sought to understand how demography-dispersal correlations modify the eco-evolutionary dynamics of range expansion. We first explored this question with the beetle Callosobruchus maculatus, a laboratory model in which evolutionary acceleration of invasion has been demonstrated. We then built a simulation model to explore the role of trait correlations in this system and more generally. We found that positive correlations amplify the positive influence of evolution on speed and variability while negative correlations (such as we found empirically) constrain that influence. Strong negative genetic correlations can even cause evolution to decelerate invasion. Genetic and nongenetic (maternal and environmental) correlations had similar effects on some measures of invasion but different effects on others. Model results enabled us to retrospectively explain invasion dynamics and trait evolution in C. maculatus and may similarly aid the interpretation of other field and laboratory studies. Nonindependence of demography and dispersal is an important consideration for understanding and predicting outcomes of range expansion.
Asunto(s)
Distribución Animal , Escarabajos/fisiología , Dinámica Poblacional , Animales , Evolución Biológica , Escarabajos/genética , Simulación por Computador , Femenino , Masculino , Fenotipo , Reproducción , Vigna/parasitologíaRESUMEN
BACKGROUND AND AIMS: The processes that maintain variation in the prevalence of symbioses within host populations are not well understood. While the fitness benefits of symbiosis have clearly been shown to drive changes in symbiont prevalence, the rate of transmission has been less well studied. Many grasses host symbiotic fungi (Epichloë spp.), which can be transmitted vertically to seeds or horizontally via spores. These symbionts may protect plants against herbivores by producing alkaloids or by increasing tolerance to damage. Therefore, herbivory may be a key ecological factor that alters symbiont prevalence within host populations by affecting either symbiont benefits to host fitness or the symbiont transmission rate. Here, we addressed the following questions: Does symbiont presence modulate plant tolerance to herbivory? Does folivory increase symbiont vertical transmission to seeds or hyphal density in seedlings? Do plants with symbiont horizontal transmission have lower rates of vertical transmission than plants lacking horizontal transmission? METHODS: We studied the grass Poa autumnalis and its symbiotic fungi in the genus Epichloë. We measured plant fitness (survival, growth, reproduction) and symbiont transmission to seeds following simulated folivory in a 3-year common garden experiment and surveyed natural populations that varied in mode of symbiont transmission. KEY RESULTS: Poa autumnalis hosted two Epichloë taxa, an undescribed vertically transmitted Epichloë sp. PauTG-1 and E. typhina subsp. poae with both vertical and horizontal transmission. Simulated folivory reduced plant survival, but endophyte presence increased tolerance to damage and boosted fitness. Folivory increased vertical transmission and hyphal density within seedlings, suggesting induced protection for progeny of damaged plants. Across natural populations, the prevalence of vertical transmission did not correlate with symbiont prevalence or differ with mode of transmission. CONCLUSIONS: Herbivory not only mediated the reproductive fitness benefits of symbiosis, but also promoted symbiosis prevalence by increasing vertical transmission of the fungus to the next generation. Our results reveal a new mechanism by which herbivores could influence the prevalence of microbial symbionts in host populations.
Asunto(s)
Epichloe , Poa , Endófitos , Herbivoria , Poaceae , SimbiosisRESUMEN
Density dependence plays an important role in population regulation and is known to generate temporal fluctuations in population density. However, the ways in which density dependence affects spatial population processes, such as species invasions, are less understood. Although classical ecological theory suggests that invasions should advance at a constant speed, empirical work is illuminating the highly variable nature of biological invasions, which often exhibit nonconstant spreading speeds, even in simple, controlled settings. Here, we explore endogenous density dependence as a mechanism for inducing variability in biological invasions with a set of population models that incorporate density dependence in demographic and dispersal parameters. We show that density dependence in demography at low population densities-i.e., an Allee effect-combined with spatiotemporal variability in population density behind the invasion front can produce fluctuations in spreading speed. The density fluctuations behind the front can arise from either overcompensatory population growth or density-dependent dispersal, both of which are common in nature. Our results show that simple rules can generate complex spread dynamics and highlight a source of variability in biological invasions that may aid in ecological forecasting.
Asunto(s)
Especies Introducidas , Modelos Biológicos , Dinámica PoblacionalRESUMEN
Adult sex ratio (ASR) is a central concept in population biology and a key factor in sexual selection, but why do most demographic models ignore sex biases? Vital rates often vary between the sexes and across life history, but their relative contributions to ASR variation remain poorly understood-an essential step to evaluate sex ratio theories in the wild and inform conservation. Here, we combine structured two-sex population models with individual-based mark-recapture data from an intensively monitored polygamous population of snowy plovers. We show that a strongly male-biased ASR (0.63) is primarily driven by sex-specific survival of juveniles rather than adults or dependent offspring. This finding provides empirical support for theories of unbiased sex allocation when sex differences in survival arise after the period of parental investment. Importantly, a conventional model ignoring sex biases significantly overestimated population viability. We suggest that sex-specific population models are essential to understand the population dynamics of sexual organisms: reproduction and population growth are most sensitive to perturbations in survival of the limiting sex. Overall, our study suggests that sex-biased early survival may contribute toward mating system evolution and population persistence, with implications for both sexual selection theory and biodiversity conservation.
Asunto(s)
Charadriiformes/fisiología , Reproducción , Razón de Masculinidad , Conducta Sexual Animal , Algoritmos , Animales , Biodiversidad , Charadriiformes/genética , Femenino , Humanos , Masculino , México , Modelos Estadísticos , Dinámica Poblacional , Crecimiento Demográfico , Caracteres Sexuales , Factores SexualesRESUMEN
Unionid mussels are considered sensitive to salinity and there is growing concern in arid and semi-arid regions that declining flows coupled with anthropogenic impacts are amplifying natural salinity levels. In this study, we tested the effects of varying salinity concentrations (3.0, 4.0, 5.0, 6.0, 7.0 and 10.0 ppt NaCl) on survival of adult Popenaias popeii, (Texas Hornshell). This species occurs in the Rio Grande basin of Texas and northern Mexico, an arid to semi-arid stream plagued by salinization, and was recently listed as Endangered under the U.S. Endangered Species Act. We performed 2, 4, and 10-day toxicity tests on individuals from two disjunct populations: Laredo, TX, and the Lower Canyons of the Rio Grande near Big Bend National Park. We found no significant differences in LC50 estimates between populations at 96-hrs or 10-days but significant differences in TUD50s at 5 ppt between populations, which indicates that tolerance does not vary but sensitivity may between these populations. Overlaying LC50 estimates at 10-days for both populations on plots of salinity (ppt) measured over time, we show parts of the Rio Grande periodically approach or exceed 4.0 ppt, indicating these reaches are becoming unsuitable for P. popeii and populations within them at risk.
Asunto(s)
Conservación de los Recursos Naturales , Tolerancia a la Sal , Unionidae/fisiología , Purificación del Agua , Animales , Agua Subterránea/química , Dosificación Letal Mediana , México , Texas , Pruebas de Toxicidad , Contaminantes Químicos del AguaRESUMEN
Beneficial inherited symbionts are expected to reach high prevalence in host populations, yet many are observed at intermediate prevalence. Theory predicts that a balance of fitness benefits and efficiency of vertical transmission may interact to stabilize intermediate prevalence. We established populations of grass hosts (Lolium multiflorum) that varied in prevalence of a heritable fungal endophyte (EpichloÑ occultans), allowing us to infer long-term equilibria by tracking change in prevalence over one generation. We manipulated an environmental stressor (elevated precipitation), which we hypothesized would reduce the fitness benefits of symbiosis, and altered the efficiency of vertical transmission by replacing endophyte-positive seeds with endophyte-free seeds. Endophytes and elevated precipitation both increased host fitness, but symbiont effects were not stronger in the drier treatment, suggesting that benefits of symbiosis were unrelated to drought tolerance. Reduced transmission suppressed the inferred equilibrium prevalence from 42.6% to 11.7%. However, elevated precipitation did not modify prevalence, consistent with the result that it did not modify fitness benefits. Our results demonstrate that failed transmission can influence the prevalence of heritable microbes and that intermediate prevalence can be a stable equilibrium due to forces that allow symbionts to increase (fitness benefits) but prevent them from reaching fixation (failed transmission).
Asunto(s)
Sequías , Endófitos/fisiología , Epichloe/fisiología , Poaceae/microbiología , Estrés Fisiológico , Análisis de Varianza , Lolium/microbiología , Simbiosis/fisiologíaRESUMEN
Multinational corporations play a prominent role in shaping the environmental trajectory of the planet. The integration of environmental costs and benefits into corporate decision-making has enormous, but as yet unfulfilled, potential to promote sustainable development. To help steer business decisions toward better environmental outcomes, corporate reporting frameworks need to develop scientifically informed standards that consistently consider land use and land conversion, clean air (including greenhouse gas emissions), availability and quality of freshwater, degradation of coastal and marine habitats, and sustainable use of renewable resources such as soil, timber, and fisheries. Standardization by itself will not be enough--also required are advances in ecosystem modeling and in our understanding of critical ecological thresholds. With improving ecosystem science, the opportunity for realizing a major breakthrough in reporting corporate environmental impacts and dependencies has never been greater. Now is the time for ecologists to take advantage of an explosion of sustainability commitments from business leaders and expanding pressure for sustainable practices from shareholders, financial institutions, and consumers.
Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Ambiente , Agricultura , Animales , Vestuario , Comercio , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/tendencias , Toma de Decisiones , Ecología/economía , Ecología/métodos , Ecología/tendenciasRESUMEN
Understanding the role of consumers in density-dependent plant population dynamics is a long-standing goal in ecology. However, the generality of herbivory effects across heterogeneous landscapes is poorly understood due to the pervasive influence of context-dependence. We tested effects of native insect herbivory on the population dynamics of an exotic thistle, Cirsium vulgare, in a field experiment replicated across eight sites in eastern Nebraska. Using hierarchical Bayesian analysis and density-dependent population models, we found potential for explosive low-density population growth (λ > 5) and complex density fluctuations under herbivore exclusion. However, herbivore access drove population decline (λ < 1), suppressing complex fluctuations. While plant-herbivore interaction outcomes are famously context-dependent, we demonstrated that herbivores suppress potentially invasive populations throughout our study region, and this qualitative outcome is insensitive to environmental context. Our novel use of Bayesian demographic modelling shows that native insect herbivores consistently prevent hard-to-predict fluctuations of weeds in environments otherwise susceptible to invasion.
Asunto(s)
Cirsium/crecimiento & desarrollo , Herbivoria , Insectos/fisiología , Especies Introducidas , Animales , Teorema de Bayes , Dinámica Poblacional , Crecimiento DemográficoRESUMEN
Two-sex populations are usually studied through frequency-dependent models that describe how sex ratio affects mating, recruitment and population growth. However, in two-sex populations, mating and recruitment should also be affected by density and by its interactions with the sex ratio. Density may have positive effects on mating (Allee effects) but negative effects on other demographic processes. In this study, we quantified how positive and negative inter-sexual interactions balance in two-sex populations. Using a dioecious grass (Poa arachnifera), we established experimental field populations that varied in density and sex ratio. We then quantified mating success (seed fertilization) and non-mating demographic performance, and integrated these responses to project population-level recruitment. Female mating success was positively density-dependent, especially at female-biased sex ratios. Other demographic processes were negatively density-dependent and, in some cases, frequency-dependent. Integrating our experimental results showed that mate-finding Allee effects dominated other types of density-dependence, giving rise to recruitment that increased with increasing density and peaked at intermediate sex ratios, reflecting tension between seed initiation (greater with more females) and seed viability (greater with more males). Our results reveal, for the first time, the balance of positive and negative inter-sexual interactions in sex-structured populations. Models that account for both density- and sex ratio dependence, particularly in mating, may be necessary for understanding and predicting two-sex population dynamics.
Asunto(s)
Modelos Biológicos , Poa/fisiología , Densidad de Población , Dinámica Poblacional , Reproducción , Razón de MasculinidadRESUMEN
A wealth of population genetic studies have documented that many successful biological invasions stem from multiple introductions from genetically distinct source populations. Yet, mechanistic understanding of whether and how genetic mixture promotes invasiveness has lagged behind documentation that such mixture commonly occurs. We conducted a laboratory experiment to test the influence of genetic mixture on the velocity of invasive range expansion. The mechanistic basis for effects of genetic mixture could include evolutionary responses (mixed invasions may harbour greater genetic diversity and thus elevated evolutionary potential) and/or fitness advantages of between-population mating (heterosis). If driven by evolution, positive effects of source population mixture should increase through time, as selection sculpts genetic variation. If driven by heterosis, effects of mixture should peak following first reproductive contact and then dissipate. Using a laboratory model system (beetles spreading through artificial landscapes), we quantified the velocity of range expansion for invasions initiated with one, two, four or six genetic sources over six generations. Our experiment was designed to test predictions corresponding to the evolutionary and heterosis mechanisms, asking whether any effects of genetic mixture occurred in early or later generations of range expansion. We also quantified demography and dispersal for each experimental treatment, since any effects of mixture should be manifest in one or both of these traits. Over six generations, invasions with any amount of genetic mixture (two, four and six sources) spread farther than single-source invasions. Our data suggest that heterosis provided a 'catapult effect', leaving a lasting signature on range expansion even though the benefits of outcrossing were transient. Individual-level trait data indicated that genetic mixture had positive effects on local demography (reduced extinction risk and enhanced population growth) during the initial stages of invasion but no consistent effects on dispersal ability. Our work is the first to demonstrate that genetic mixture can alter the course of spatial expansion, the stage of invasion typically associated with the greatest ecological and economic impacts. We suggest that similar effects of genetic mixture may be a common feature of biological invasions in nature, but that these effects can easily go undetected.
Asunto(s)
Distribución Animal , Escarabajos/fisiología , Variación Genética , Vigor Híbrido , Animales , Escarabajos/genética , Especies Introducidas , Modelos Genéticos , Dinámica PoblacionalRESUMEN
Heritable microbes are abundant in nature and influential to their hosts and the communities in which they reside. However, drivers of variability in the prevalence of heritable symbionts and their rates of transmission are poorly resolved, particularly across host populations experiencing variable biotic and abiotic environments. To fill these gaps, we surveyed 25 populations of two native grasses (Elymus virginicus and Elymus canadensis) across the southern Great Plains (USA). Both grass species host heritable endophytic fungi (genus EpichloÑ) and can hybridize where their ranges overlap. From a subset of hosts, we characterized endophyte genotype using genetic loci that link to bioactive alkaloid production. First, we found mean vertical transmission rates and population-level prevalence were positively correlated, specifically for E. virginicus. However, both endophyte prevalence and transmission varied substantially across populations and did not strongly correlate with abiotic variables, with one exception: endophyte prevalence decreased as drought stress decreased for E. virginicus hosts. Second, we evaluated the potential influence of biotic factors and found that, after accounting for climate, endophyte genotype explained significant variation in symbiont inheritance. We also contrasted populations where host species co-occurred in sympatry vs. allopatry. Sympatry could potentially increase interspecific hybridization, but this variable did not associate with patterns of symbiont prevalence or transmission success. Our results reveal substantial variability in symbiont prevalence and transmission across host populations and identify symbiont genotype, and to a lesser extent, the abiotic environment as sources of this variation.
Asunto(s)
Elymus/microbiología , Endófitos/fisiología , Simbiosis , Arkansas , Elymus/fisiología , Ambiente , Medio Oeste de Estados Unidos , Sudoeste de Estados UnidosRESUMEN
BACKGROUND: Multiple corticosteroids and treatment regimens have been used as adjuncts in the treatment of septic shock. Qualitative and quantitative differences exist at cellular and tissular levels between the different drugs and their patterns of delivery. The objective of this study was to elucidate any differences between the drugs and their treatment regimens regarding outcomes for corticosteroid use in adult patients with septic shock. METHODS: Network meta-analysis of the data used for the recently conducted Cochrane review was performed. Studies that included children and were designed to assess respiratory function in pneumonia and acute respiratory distress syndrome, as well as cross-over studies, were excluded. Network plots were created for each outcome, and all analyses were conducted using a frequentist approach assuming a random-effects model. RESULTS: Complete data from 22 studies and partial data from 1 study were included. Network meta-analysis provided no clear evidence that any intervention or treatment regimen is better than any other across the spectrum of outcomes. There was strong evidence of differential efficacy in only one area: shock reversal. Hydrocortisone boluses and infusions were more likely than methylprednisolone boluses and placebo to result in shock reversal. CONCLUSIONS: There was no clear evidence that any one corticosteroid drug or treatment regimen is more likely to be effective in reducing mortality or reducing the incidence of gastrointestinal bleeding or superinfection in septic shock. Hydrocortisone delivered as a bolus or as an infusion was more likely than placebo and methylprednisolone to result in shock reversal.