Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Isr J Chem ; 63(5-6)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37469628

RESUMEN

The study of quorum sensing, bacterial cell-to-cell communication mediated by the production and detection of small molecule signals, has skyrocketed since its discovery in the last third of the 20th century. Building from early investigations of bacterial bioluminescence, the process has been characterized to control a numerous and growing number of group behaviors, including virulence and biofilm formation. Bonnie Bassler has made key contributions to the understanding of quorum sensing, leading interdisciplinary efforts to characterize key signaling pathway components and their respective signaling molecules across a range of gram-negative bacteria. This review highlights her work in the field, with a particular emphasis on the chemical contributions of her work.

2.
Nucleic Acids Res ; 48(1): 171-183, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31745565

RESUMEN

Bacteria coordinate cellular behaviors using a cell-cell communication system termed quorum sensing. In Vibrio harveyi, the master quorum sensing transcription factor LuxR directly regulates >100 genes in response to changes in population density. Here, we show that LuxR derepresses quorum sensing loci by competing with H-NS, a global transcriptional repressor that oligomerizes on DNA to form filaments and bridges. We first identified H-NS as a repressor of bioluminescence gene expression, for which LuxR is a required activator. In an hns deletion strain, LuxR is no longer necessary for transcription activation of the bioluminescence genes, suggesting that the primary role of LuxR is to displace H-NS to derepress gene expression. Using RNA-seq and ChIP-seq, we determined that H-NS and LuxR co-regulate and co-occupy 28 promoters driving expression of 63 genes across the genome. ChIP-PCR assays show that as autoinducer concentration increases, LuxR protein accumulates at co-occupied promoters while H-NS protein disperses. LuxR is sufficient to evict H-NS from promoter DNA in vitro, which is dependent on LuxR DNA binding activity. From these findings, we propose a model in which LuxR serves as a counter-silencer at H-NS-repressed quorum sensing loci by disrupting H-NS nucleoprotein complexes that block transcription.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Regulación Bacteriana de la Expresión Génica , Silenciador del Gen , Percepción de Quorum/genética , Proteínas Represoras/genética , Transactivadores/genética , Vibrio/genética , Carga Bacteriana , ADN Bacteriano , Proteínas de Unión al ADN/deficiencia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Análisis de Secuencia de ARN , Transactivadores/metabolismo , Transcripción Genética , Vibrio/metabolismo
3.
ACS Infect Dis ; 7(3): 535-543, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33587590

RESUMEN

Infections with Pseudomonas aeruginosa are a looming threat to public health. New treatment strategies are needed to combat this pathogen, for example, by blocking the production of virulence factors like pyocyanin. A photoaffinity analogue of an antipyocyanin compound was developed to interrogate the inhibitor's molecular mechanism of action. While we sought to develop antivirulence inhibitors, the proteomics results suggested that the compounds had antibiotic adjuvant activity. Unexpectedly, we found that these compounds amplify the bactericidal activity of colistin, a well-characterized antibiotic, suggesting they may represent a first-in-class antibiotic adjuvant therapy. Analogues have the potential not only to widen the therapeutic index of cationic antimicrobial peptides like colistin, but also to be effective against colistin-resistant strains, strengthening our arsenal to combat P. aeruginosa infections.


Asunto(s)
Antibacterianos , Colistina , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos , Pseudomonas aeruginosa , Piocianina
4.
Trans R Soc Trop Med Hyg ; 114(7): 492-498, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32193540

RESUMEN

BACKGROUND: Bacteria are sources of numerous molecules used in treatment of infectious diseases. We investigated effects of molecules produced by 26 Pseudomonas aeruginosa strains against infection of mammalian cell cultures with Trypanosoma cruzi, the aetiological agent of Chagas disease. METHODS: Vero cells were infected with T. cruzi in the presence of wild-type P. aeruginosa supernatants or supernatants of mutants with defects in the production of various virulence, quorum sensing and iron acquisition factors. Quantification of T. cruzi infection (percentage of infected cells) and multiplication (number of amastigotes per infected cell) was performed and cell viability was determined. RESULTS: Wild-type P. aeruginosa products negatively affected T. cruzi infection and multiplication in a dose-dependent manner, without evident toxicity for mammalian cells. PvdD/pchE mutation (loss of the P. aeruginosa siderophores pyoverdine and pyochelin) had the greatest impact on anti-T. cruzi activity. Negative effects on T. cruzi infection by pure pyochelin, but not pyoverdine, or other P. aeruginosa exoproducts studied, were quantitatively similar to the effects of benznidazole, the current standard therapy against T. cruzi. CONCLUSIONS: The P. aeruginosa product pyochelin showed promising activity against T. cruzi and might become a new lead molecule for therapy development.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Animales , Chlorocebus aethiops , Fenoles , Pseudomonas aeruginosa , Tiazoles , Células Vero
5.
Elife ; 62017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28873053

RESUMEN

Predators and prey co-evolve, each maximizing their own fitness, but the effects of predator-prey interactions on cellular and molecular machinery are poorly understood. Here, we study this process using the predator Caenorhabditis elegans and the bacterial prey Streptomyces, which have evolved a powerful defense: the production of nematicides. We demonstrate that upon exposure to Streptomyces at their head or tail, nematodes display an escape response that is mediated by bacterially produced cues. Avoidance requires a predicted G-protein-coupled receptor, SRB-6, which is expressed in five types of amphid and phasmid chemosensory neurons. We establish that species of Streptomyces secrete dodecanoic acid, which is sensed by SRB-6. This behavioral adaptation represents an important strategy for the nematode, which utilizes specialized sensory organs and a chemoreceptor that is tuned to recognize the bacteria. These findings provide a window into the molecules and organs used in the coevolutionary arms race between predator and potential prey.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Células Quimiorreceptoras/fisiología , Neuronas/fisiología , Streptomyces/patogenicidad , Adaptación Fisiológica , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/microbiología , Quimiotaxis , Neuronas/citología , Neuronas/microbiología , Filogenia , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA