Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 163(3): 734-45, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26456112

RESUMEN

The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas de Complejo Poro Nuclear/química , Proteínas Nucleares/química , Cristalografía por Rayos X , Transferencia Resonante de Energía de Fluorescencia , Humanos , Carioferinas/química , Carioferinas/metabolismo , Modelos Moleculares , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae
2.
Chem Rev ; 122(10): 9331-9356, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35446534

RESUMEN

Intrinsically disordered proteins are ubiquitous throughout all known proteomes, playing essential roles in all aspects of cellular and extracellular biochemistry. To understand their function, it is necessary to determine their structural and dynamic behavior and to describe the physical chemistry of their interaction trajectories. Nuclear magnetic resonance is perfectly adapted to this task, providing ensemble averaged structural and dynamic parameters that report on each assigned resonance in the molecule, unveiling otherwise inaccessible insight into the reaction kinetics and thermodynamics that are essential for function. In this review, we describe recent applications of NMR-based approaches to understanding the conformational energy landscape, the nature and time scales of local and long-range dynamics and how they depend on the environment, even in the cell. Finally, we illustrate the ability of NMR to uncover the mechanistic basis of functional disordered molecular assemblies that are important for human health.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Humanos , Proteínas Intrínsecamente Desordenadas/química , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Termodinámica
3.
Proc Natl Acad Sci U S A ; 116(10): 4256-4264, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30787192

RESUMEN

Assembly of paramyxoviral nucleocapsids on the RNA genome is an essential step in the viral cycle. The structural basis of this process has remained obscure due to the inability to control encapsidation. We used a recently developed approach to assemble measles virus nucleocapsid-like particles on specific sequences of RNA hexamers (poly-Adenine and viral genomic 5') in vitro, and determined their cryoelectron microscopy maps to 3.3-Å resolution. The structures unambiguously determine 5' and 3' binding sites and thereby the binding-register of viral genomic RNA within nucleocapsids. This observation reveals that the 3' end of the genome is largely exposed in fully assembled measles nucleocapsids. In particular, the final three nucleotides of the genome are rendered accessible to the RNA-dependent RNA polymerase complex, possibly enabling efficient RNA processing. The structures also reveal local and global conformational changes in the nucleoprotein upon assembly, in particular involving helix α6 and helix α13 that form edges of the RNA binding groove. Disorder is observed in the bound RNA, localized at one of the two backbone conformational switch sites. The high-resolution structure allowed us to identify putative nucleobase interaction sites in the RNA-binding groove, whose impact on assembly kinetics was measured using real-time NMR. Mutation of one of these sites, R195, whose sidechain stabilizes both backbone and base of a bound nucleic acid, is thereby shown to be essential for nucleocapsid-like particle assembly.


Asunto(s)
Microscopía por Crioelectrón/métodos , Virus del Sarampión/química , Virus del Sarampión/metabolismo , Nucleocápside/química , Nucleocápside/metabolismo , Nucleocápside/ultraestructura , Ensamble de Virus , Sitios de Unión , Genoma Viral , Cinética , Imagen por Resonancia Magnética/métodos , Modelos Moleculares , Conformación Molecular , Proteínas de la Nucleocápside , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Nucleoproteínas/ultraestructura , Paramyxoviridae/química , Paramyxoviridae/ultraestructura , ARN Viral/química , ARN Viral/metabolismo , ARN Viral/ultraestructura , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Virales/ultraestructura
4.
J Am Chem Soc ; 143(48): 20109-20121, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34817999

RESUMEN

Studying the conformational landscape of intrinsically disordered and partially folded proteins is challenging and only accessible to a few solution state techniques, such as nuclear magnetic resonance (NMR), small-angle scattering techniques, and single-molecule Förster resonance energy transfer (smFRET). While each of the techniques is sensitive to different properties of the disordered chain, such as local structural propensities, overall dimension, or intermediate- and long-range contacts, conformational ensembles describing intrinsically disordered proteins (IDPs) accurately should ideally respect all of these properties. Here we develop an integrated approach using a large set of FRET efficiencies and fluorescence lifetimes, NMR chemical shifts, and paramagnetic relaxation enhancements (PREs), as well as small-angle X-ray scattering (SAXS) to derive quantitative conformational ensembles in agreement with all parameters. Our approach is tested using simulated data (five sets of PREs and 15 FRET efficiencies) and validated experimentally on the example of the disordered domain of measles virus phosphoprotein, providing new insights into the conformational landscape of this viral protein that comprises transient structural elements and is more compact than an unfolded chain throughout its length. Rigorous cross-validation using FRET efficiencies, fluorescence lifetimes, and SAXS demonstrates the predictive nature of the calculated conformational ensembles and underlines the potential of this strategy in integrative dynamic structural biology.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Algoritmos , Transferencia Resonante de Energía de Fluorescencia , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Dispersión del Ángulo Pequeño , Difracción de Rayos X
5.
Proc Natl Acad Sci U S A ; 114(31): E6342-E6351, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28716919

RESUMEN

Unfolded states of proteins and native states of intrinsically disordered proteins (IDPs) populate heterogeneous conformational ensembles in solution. The average sizes of these heterogeneous systems, quantified by the radius of gyration (RG ), can be measured by small-angle X-ray scattering (SAXS). Another parameter, the mean dye-to-dye distance (RE ) for proteins with fluorescently labeled termini, can be estimated using single-molecule Förster resonance energy transfer (smFRET). A number of studies have reported inconsistencies in inferences drawn from the two sets of measurements for the dimensions of unfolded proteins and IDPs in the absence of chemical denaturants. These differences are typically attributed to the influence of fluorescent labels used in smFRET and to the impact of high concentrations and averaging features of SAXS. By measuring the dimensions of a collection of labeled and unlabeled polypeptides using smFRET and SAXS, we directly assessed the contributions of dyes to the experimental values RG and RE For chemically denatured proteins we obtain mutual consistency in our inferences based on RG and RE , whereas for IDPs under native conditions, we find substantial deviations. Using computations, we show that discrepant inferences are neither due to methodological shortcomings of specific measurements nor due to artifacts of dyes. Instead, our analysis suggests that chemical heterogeneity in heteropolymeric systems leads to a decoupling between RE and RG that is amplified in the absence of denaturants. Therefore, joint assessments of RG and RE combined with measurements of polymer shapes should provide a consistent and complete picture of the underlying ensembles.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Desplegamiento Proteico , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos , Colorantes/química , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Conformación Proteica
6.
J Am Chem Soc ; 141(44): 17817-17829, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31591893

RESUMEN

Intrinsically disordered proteins (IDPs) are flexible biomolecules whose essential functions are defined by their dynamic nature. Nuclear magnetic resonance (NMR) spectroscopy is ideally suited to the investigation of this behavior at atomic resolution. NMR relaxation is increasingly used to detect conformational dynamics in free and bound forms of IDPs under conditions approaching physiological, although a general framework providing a quantitative interpretation of these exquisitely sensitive probes as a function of experimental conditions is still lacking. Here, measuring an extensive set of relaxation rates sampling multiple-time-scale dynamics over a broad range of crowding conditions, we develop and test an integrated analytical description that accurately portrays the motion of IDPs as a function of the intrinsic properties of the crowded molecular environment. In particular we observe a strong dependence of both short-range and long-range motional time scales of the protein on the friction of the solvent. This tight coupling between the dynamic behavior of the IDP and its environment allows us to develop analytical expressions for protein motions and NMR relaxation properties that can be accurately applied over a vast range of experimental conditions. This unified dynamic description provides new insight into the physical behavior of IDPs, extending our ability to quantitatively investigate their conformational dynamics under complex environmental conditions, and accurately predicting relaxation rates reporting on motions on time scales up to tens of nanoseconds, both in vitro and in cellulo.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , MAP Quinasa Quinasa 4/química , Nucleoproteínas/química , Proteínas Virales/química , Animales , Isótopos de Nitrógeno/química , Resonancia Magnética Nuclear Biomolecular , Oocitos/química , Conformación Proteica , Dominios Proteicos , Virus Sendai/química , Xenopus laevis
7.
J Am Chem Soc ; 140(3): 1148-1158, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29276882

RESUMEN

Intrinsically disordered proteins (IDPs) display a large number of interaction modes including folding-upon-binding, binding without major structural transitions, or binding through highly dynamic, so-called fuzzy, complexes. The vast majority of experimental information about IDP binding modes have been inferred from crystal structures of proteins in complex with short peptides of IDPs. However, crystal structures provide a mainly static view of the complexes and do not give information about the conformational dynamics experienced by the IDP in the bound state. Knowledge of the dynamics of IDP complexes is of fundamental importance to understand how IDPs engage in highly specific interactions without concomitantly high binding affinity. Here, we combine rotating-frame R1ρ, Carr-Purcell-Meiboom Gill relaxation dispersion as well as chemical exchange saturation transfer to decipher the dynamic interaction profile of an IDP in complex with its partner. We apply the approach to the dynamic signaling complex formed between the mitogen-activated protein kinase (MAPK) p38α and the intrinsically disordered regulatory domain of the MAPK kinase MKK4. Our study demonstrates that MKK4 employs a subtle combination of interaction modes in order to bind to p38α, leading to a complex displaying significantly different dynamics across the bound regions.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Humanos , Proteínas Intrínsecamente Desordenadas/química , MAP Quinasa Quinasa 4/química , Ratones , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteínas Quinasas p38 Activadas por Mitógenos/química
8.
Nat Methods ; 11(3): 297-300, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24441935

RESUMEN

We present an automated microfluidic platform that performs multisecond observation of single molecules with millisecond time resolution while bypassing the need for immobilization procedures. With this system, we confine biomolecules to a thin excitation field by reversibly collapsing microchannels to nanochannels. We demonstrate the power of our method by studying a variety of complex nucleic acid and protein systems, including DNA Holliday junctions, nucleosomes and human transglutaminase 2.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Microfluídica/instrumentación , Microfluídica/métodos , Automatización , Proteínas de Unión al GTP/genética , Humanos , Modelos Moleculares , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas/genética
9.
Angew Chem Int Ed Engl ; 55(32): 9356-60, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27270664

RESUMEN

Measles virus RNA genomes are packaged into helical nucleocapsids (NCs), comprising thousands of nucleo-proteins (N) that bind the entire genome. N-RNA provides the template for replication and transcription by the viral polymerase and is a promising target for viral inhibition. Elucidation of mechanisms regulating this process has been severely hampered by the inability to controllably assemble NCs. Here, we demonstrate self-organization of N into NC-like particles in vitro upon addition of RNA, providing a simple and versatile tool for investigating assembly. Real-time NMR and fluorescence spectroscopy reveals biphasic assembly kinetics. Remarkably, assembly depends strongly on the RNA-sequence, with the genomic 5' end and poly-Adenine sequences assembling efficiently, while sequences such as poly-Uracil are incompetent for NC formation. This observation has important consequences for understanding the assembly process.


Asunto(s)
Virus del Sarampión/metabolismo , Nucleocápside/metabolismo , Nucleoproteínas/metabolismo , ARN Viral/metabolismo , Proteínas Virales/metabolismo , Ensamble de Virus , Secuencia de Bases , Cinética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Nucleocápside/química , Proteínas de la Nucleocápside , Nucleoproteínas/química , ARN Viral/química , ARN Viral/genética , Espectrometría de Fluorescencia , Proteínas Virales/química
10.
J Am Chem Soc ; 137(48): 15122-34, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26424125

RESUMEN

Influenza A RNA polymerase complex is formed from three components, PA, PB1, and PB2. PB2 is independently imported into the nucleus prior to polymerase reconstitution. All crystallographic structures of the PB2 C-terminus (residues 536-759) reveal two globular domains, 627 and NLS, that form a tightly packed heterodimer. The molecular basis of the affinity of 627-NLS for importins remained unclear from these structures, apparently requiring large-scale conformational changes prior to importin binding. Using a combination of solution-state NMR, small-angle neutron scattering, small-angle X-ray scattering (SAXS), and Förster resonance energy transfer (FRET), we show that 627-NLS populates a temperature-dependent dynamic equilibrium between closed and open states. The closed state is stabilized by a tripartite salt bridge involving the 627-NLS interface and the linker, that becomes flexible in the open state, with 627 and NLS dislocating into a highly dynamic ensemble. Activation enthalpies and entropies associated with the rupture of this interface were derived from simultaneous analysis of temperature-dependent chemical exchange saturation transfer measurements, revealing a strong temperature dependence of both open-state population and exchange rate. Single-molecule FRET and SAXS demonstrate that only the open-form is capable of binding to importin α and that, upon binding, the 627 domain samples a dynamic conformational equilibrium in the vicinity of the C-terminus of importin α. This intrinsic large-scale conformational flexibility therefore enables 627-NLS to bind importin through conformational selection from a temperature-dependent equilibrium comprising both functional forms of the protein.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/enzimología , Carioferinas/metabolismo , Proteínas Virales/metabolismo , Cristalografía por Rayos X , Transferencia Resonante de Energía de Fluorescencia , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Soluciones , Proteínas Virales/química
11.
EMBO Rep ; 14(2): 178-83, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23238392

RESUMEN

Intrinsically disordered and phenylalanine-glycine-rich nucleoporins (FG Nups) form a crowded and selective transport conduit inside the NPC that can only be transited with the help of nuclear transport receptors (NTRs). It has been shown in vitro that FG Nups can assemble into two distinct appearances, amyloids and hydrogels. If and how these phenomena are linked and if they have a physiological role still remains unclear. Using a variety of high-resolution fluorescence and electron microscopic (EM) tools, we reveal that crowding conditions mimicking the NPC environment can accelerate the aggregation and amyloid formation speed of yeast and human FG Nups by orders of magnitude. Aggregation can be inhibited by NTRs, providing a rationale on how the cell might control amyloid formation of FG Nups. The superb spatial resolving power of EM also reveals that hydrogels are enlaced amyloid fibres, and these findings have implications for existing transport models and for NPC assembly.


Asunto(s)
Amiloide/química , Proteínas de Complejo Poro Nuclear/química , Amiloide/ultraestructura , Dextranos/química , Humanos , Hidrogeles/química , Cinética , Proteínas de Complejo Poro Nuclear/ultraestructura , Concentración Osmolar , Porosidad , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , beta Carioferinas/química
12.
Bioessays ; 35(1): 65-74, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23147190

RESUMEN

While innovations in modern microscopy, spectroscopy, and nanoscopy techniques have made single molecule observation a standard in many laboratories, the actual design of meaningful fluorescence reporter systems now hinders major scientific breakthroughs. Even though the field of chemical biology is supercharging the fluorescence toolbox, surprisingly few strategies exist that make the transition from model systems to biologically relevant applications. At the same time, the number of microscopy techniques is growing dramatically. We explain our view on how the impact of modern technologies is influenced not only by further hard- and software developments, but also by the availability and suitability of protein-engineering tools. We identify how the largely independent research fields of chemical biology and fluorescence nanoscopy can influence each other to synergistically drive future technology that can visualize the localization, structure, and dynamics of molecular function without constraints.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Nanotecnología , Ingeniería de Proteínas , Proteínas/química , Fluorescencia , Humanos , Microscopía Fluorescente , Coloración y Etiquetado
13.
Biochim Biophys Acta ; 1828(8): 1822-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23583923

RESUMEN

To characterize the structure and dynamics of cholesterol in membranes, fluorescent analogs of the native molecule have widely been employed. The cholesterol content in membranes is in general manipulated by using water-soluble cyclodextrins. Since the interactions between cyclodextrins and fluorescent-labeled cholesterol have not been investigated in detail so far, we have compared the cyclodextrin-mediated membrane extraction of three different fluorescent cholesterol analogs (one bearing a NBD and two bearing BODIPY moieties). Extraction of these analogs was followed by measuring the Förster resonance energy transfer between a rhodamine moiety linked to phosphatidylethanolamine and the labeled cholesterol. The extraction kinetics revealed that the analogs are differently extracted from membranes. We examined the orientation of the analogs within the membrane and their influence on lipid condensation using NMR and EPR spectroscopies. Our data indicate that the extraction of fluorescent sterols from membranes is determined by several parameters, including their impact on lipid order, their hydrophobicity, their intermolecular interactions with surrounding lipids, their orientation within the bilayer, and their affinity with the exogenous acceptor.


Asunto(s)
Colesterol/análogos & derivados , Ciclodextrinas/química , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/metabolismo , Fosfatidilcolinas/metabolismo , Animales , Células CHO , Colesterol/metabolismo , Cricetinae , Ciclodextrinas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Espectrometría de Fluorescencia , Esteroles/química
14.
Angew Chem Int Ed Engl ; 53(28): 7364-7, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24898547

RESUMEN

Intrinsically disordered proteins (IDPs) can bind to multiple interaction partners. Numerous binding regions in the IDP that act in concert through complex cooperative effects facilitate such interactions, but complicate studying IDP complexes. To address this challenge we developed a combined fluorescence correlation and time-resolved polarization spectroscopy approach to study the binding properties of the IDP nucleoporin153 (Nup153) to nuclear transport receptors (NTRs). The detection of segmental backbone mobility of Nup153 within the unperturbed complex provided a readout of local, region-specific binding properties that are usually masked in measurements of the whole IDP. The binding affinities of functionally and structurally diverse NTRs to distinct regions of Nup153 can differ by orders of magnitudes-a result with implications for the diversity of transport routes in nucleocytoplasmic transport.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Modelos Biológicos , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Drosophila/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Movimiento (Física) , Unión Proteica
15.
Curr Opin Struct Biol ; 82: 102659, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37499445

RESUMEN

Many proteins require different structural states or conformations for function, and intrinsically disordered proteins, i.e. proteins without stable three-dimensional structure, are certainly an extreme. Single molecule fluorescence and nuclear magnetic resonance (NMR) spectroscopy are both exceptionally well suited to decipher and describe these states and their interconversion. Different time scales, from picoseconds to several milliseconds, can be addressed by both techniques. The length scales probed and the sample requirements (e.g. concentration, molecular weight, sample complexity) are, however, vastly different, making NMR and single molecule fluorescence an excellent combination for integrated studies. Here, we review recently undertaken approaches for the combined use of NMR and single molecule fluorescence to study protein dynamics.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proteínas Intrínsecamente Desordenadas , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Intrínsecamente Desordenadas/química , Espectroscopía de Resonancia Magnética , Conformación Proteica , Resonancia Magnética Nuclear Biomolecular/métodos
16.
J Biol Chem ; 286(24): 21835-43, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21521689

RESUMEN

The ATP binding cassette (ABC) transporter Aus1 is expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and is required for sterol uptake. These observations suggest that Aus1 promotes the translocation of sterols across membranes, but the precise transport mechanism has yet to be identified. In this study, an extraction and purification procedure was developed to characterize the Aus1 transporter. The detergent-solubilized protein was able to bind and hydrolyze ATP. Mutagenesis of the conserved lysine to methionine in the Walker A motif abolished ATP hydrolysis. Likewise, ATP hydrolysis was inhibited by classical inhibitors of ABC transporters. Upon reconstitution into proteoliposomes, the ATPase activity of Aus1 was specifically stimulated by phosphatidylserine (PS) in a stereoselective manner. We also found that Aus1-dependent sterol uptake, but not Aus1 expression and trafficking to the plasma membrane, was affected by changes in cellular PS levels. These results suggest a direct interaction between Aus1 and PS that is critical for the activity of the transporter.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/química , Membrana Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Hidrólisis , Concentración 50 Inhibidora , Lípidos/química , Liposomas/química , Lisina/química , Metionina/química , Microscopía Confocal/métodos , Nucleótidos/química , Fosfatidilserinas/química
17.
J Am Chem Soc ; 134(11): 5187-95, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22356317

RESUMEN

Single-molecule methods have matured into central tools for studies in biology. Foerster resonance energy transfer (FRET) techniques, in particular, have been widely applied to study biomolecular structure and dynamics. The major bottleneck for a facile and general application of these studies arises from the need to label biological samples site-specifically with suitable fluorescent dyes. In this work, we present an optimized strategy combining click chemistry and the genetic encoding of unnatural amino acids (UAAs) to overcome this limitation for proteins. We performed a systematic study with a variety of clickable UAAs and explored their potential for high-resolution single-molecule FRET (smFRET). We determined all parameters that are essential for successful single-molecule studies, such as accessibility of the probes, expression yield of proteins, and quantitative labeling. Our multiparameter fluorescence analysis allowed us to gain new insights into the effects and photophysical properties of fluorescent dyes linked to various UAAs for smFRET measurements. This led us to determine that, from the extended tool set that we now present, genetically encoding propargyllysine has major advantages for state-of-the-art measurements compared to other UAAs. Using this optimized system, we present a biocompatible one-step dual-labeling strategy of the regulatory protein RanBP3 with full labeling position freedom. Our technique allowed us then to determine that the region encompassing two FxFG repeat sequences adopts a disordered but collapsed state. RanBP3 serves here as a prototypical protein that, due to its multiple cysteines, size, and partially disordered structure, is not readily accessible to any of the typical structure determination techniques such as smFRET, NMR, and X-ray crystallography.


Asunto(s)
Fluorescencia , Proteínas/química , Aminoácidos/química , Química Clic , Transferencia Resonante de Energía de Fluorescencia , Modelos Moleculares , Estructura Molecular , Ingeniería de Proteínas , Proteínas/genética , Proteínas/aislamiento & purificación
18.
Chembiochem ; 13(14): 2094-9, 2012 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-22945333

RESUMEN

Visualizing biomolecules by fluorescent tagging is a powerful method for studying their behaviour and function inside cells. We prepared and genetically encoded an unnatural amino acid (UAA) that features a bicyclononyne moiety. This UAA offered exceptional reactivity in strain-promoted azide-alkyne cycloadditions. Kinetic measurements revealed that the UAA reacted also remarkably fast in the inverse-electron-demand Diels-Alder cycloaddition with tetrazine-conjugated dyes. Genetic encoding of the new UAA inside mammalian cells and its subsequent selective labeling at low dye concentrations demonstrate the usefulness of the new amino acid for future imaging studies.


Asunto(s)
Compuestos Bicíclicos con Puentes/química , Lisina/química , Proteínas/metabolismo , Alquinos/química , Azidas/química , Carbocianinas/química , Química Clic , Cumarinas/química , Reacción de Cicloadición , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Células HeLa , Humanos , Lisina/síntesis química , Microscopía Fluorescente , Ingeniería de Proteínas , Proteínas/química , ARN de Transferencia/metabolismo
19.
Biophys J ; 101(7): 1710-9, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21961597

RESUMEN

Nucleoporins (Nups), which are intrinsically disordered, form a selectivity filter inside the nuclear pore complex, taking a central role in the vital nucleocytoplasmic transport mechanism. These Nups display a complex and nonrandom amino-acid architecture of phenylalanine glycine (FG)-repeat clusters and intra-FG linkers. How such heterogeneous sequence composition relates to function and could give rise to a transport mechanism is still unclear. Here we describe a combined chemical biology and single-molecule fluorescence approach to study the large human Nup153 FG-domain. In order to obtain insights into the properties of this domain beyond the average behavior, we probed the end-to-end distance (R(E)) of several ∼50-residues long FG-repeat clusters in the context of the whole protein domain. Despite the sequence heterogeneity of these FG-clusters, we detected a reoccurring and consistent compaction from a relaxed coil behavior under denaturing conditions (R(E)/R(E,RC) = 0.99 ± 0.15 with R(E,RC) corresponding to ideal relaxed coil behavior) to a collapsed state under native conditions (R(E)/R(E,RC) = 0.79 ± 0.09). We then analyzed the properties of this protein on the supramolecular level, and determined that this human FG-domain was in fact able to form a hydrogel with physiological permeability barrier properties.


Asunto(s)
Proteínas de Complejo Poro Nuclear/química , Secuencias Repetitivas de Aminoácido , Espectrometría de Fluorescencia/métodos , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Humanos , Proteínas de Complejo Poro Nuclear/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Porosidad , Desnaturalización Proteica , Estructura Terciaria de Proteína
20.
Biomolecules ; 12(1)2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-35053175

RESUMEN

Single molecule fluorescence and nuclear magnetic resonance spectroscopy (NMR) are two very powerful techniques for the analysis of intrinsically disordered proteins (IDPs). Both techniques have individually made major contributions to deciphering the complex properties of IDPs and their interactions, and it has become evident that they can provide very complementary views on the distance-dynamics relationships of IDP systems. We now review the first approaches using both NMR and single molecule fluorescence to decipher the molecular properties of IDPs and their interactions. We shed light on how these two techniques were employed synergistically for multidomain proteins harboring intrinsically disordered linkers, for veritable IDPs, but also for liquid-liquid phase separated systems. Additionally, we provide insights into the first approaches to use single molecule Förster resonance energy transfer (FRET) and NMR for the description of multiconformational models of IDPs.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Intrínsecamente Desordenadas/química , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA