Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Aging Neurosci ; 14: 836634, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35299945

RESUMEN

Vascular endothelial dysfunction and capillary loss are currently considered to be a primary phenotype of normal human aging and Alzheimer's disease (AD). Activation of protein kinase C (PKCε) improves several molecular, cellular, physiological, and behavioral endpoints, yet it is not known whether a loss of PKCε activity occurs in the microvascular endothelium in aged and AD hippocampi, whether this loss contributes to microvascular change, or whether activation of PKCε protects against microvascular damage, an early change that induces age-associated memory defect and AD. We investigated the effect of the PKCε activation on microvascular loss in the hippocampus, important for memory storage. In cultured human brain microvascular endothelial cells, tert-butyl hydroperoxide induced oxidative stress and a decrease in manganese superoxide dismutase (MnSOD) mRNA and protein expression that were blocked by the antioxidant drugs. The PKCε activators bryostatin and DCPLA methyl ester increased PKCε, associated with an increase in MnSOD mRNA and its protein as well as vascular endothelial growth factor (VEGF), which was inhibited by the mRNA-stabilizing HuR inhibitors. In rats (>24 months old) and AD transgenic mice Tg2576 (5 months old), bryostatin or DCP-LA prevented a decrease in vascular PKCε, MnSOD, and VEGF and prevented microvascular loss and age-related memory impairment. An autopsy-confirmed AD hippocampus showed a decrease in PKCε and MnSOD mRNAs and their proteins and VEGF as well as in microvascular density compared to non-AD controls. In conclusion, the PKCε activation can rescue a decrease in PKCε, MnSOD, and VEGF via posttranscription regulation and alleviate oxidative stress, and in doing so, prevent microvascular loss during aging and AD.

2.
Mol Neurobiol ; 59(8): 4966-4986, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35665894

RESUMEN

Current evidence suggests that mild cerebrovascular changes could induce neurodegeneration and contribute to HIV-associated neurocognitive disease (HAND) in HIV patients. We investigated both the quantitative and qualitative impact of HIV infection on brain microvessels, especially on hippocampal microvessels, which are crucial for optimal O2 supply, and thus for maintaining memory and cognitive abilities. The results obtained using cultured human brain microvascular endothelial cells (HBMEC) were reproduced using a suitable mouse model and autopsied human HIV hippocampus. In HBMEC, we found significantly higher oxidative stress-dependent apoptotic cell loss following 5 h of treatment of GST-Tat (1 µg/ml) compared to GST (1 µg/ml) control. We noticed complete recovery of HBMEC cells after 24 h of GST-Tat treatment, due to temporal degradation or inactivation of GST-Tat. Interestingly, we found a sustained increase in mitochondrial oxidative DNA damage marker 8-OHdG, as well as an increase in hypoxia-inducible factor hypoxia-inducible factor-1α (HIF-1α). In our mouse studies, upon short-term injection of GST-Tat, we found the loss of small microvessels (mostly capillaries) and vascular endothelial growth factor (VEGF), but not large microvessels (arterioles and venules) in the hippocampus. In addition to capillary loss, in the post-mortem HIV-infected human hippocampus, we observed large microvessels with increased wall cells and perivascular tissue degeneration. Together, our data show a crucial role of Tat in inducing HIF-1α-dependent inhibition of mitochondrial transcriptional factor A (TFAM) and dilated perivascular space. Thus, our results further define the underlying molecular mechanism promoting mild cerebrovascular disease, neuropathy, and HAND pathogenesis in HIV patients.


Asunto(s)
Infecciones por VIH , Animales , Células Endoteliales/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/metabolismo , Hipocampo/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Microvasos , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
J Biol Chem ; 285(3): 2152-64, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19906647

RESUMEN

Epigenetic regulation of transcription plays an important role in cell-specific gene expression by altering chromatin structure and access of transcriptional regulators to DNA binding sites. Surfactant protein B (Sftpb) is a developmentally regulated lung epithelial gene critical for lung function. Thyroid transcription factor 1 (Nkx2-1) regulates Sftpb gene expression in various species. We show that Nkx2-1 binds to the mouse Sftpb (mSftpb) promoter in the lung. In a mouse lung epithelial cell line (MLE-15), Nkx2-1 knockdown reduces Sftpb expression, and mutation of Nkx2-1 cis-elements significantly reduces mSftpb promoter activity. Whether chromatin structure modulates Nkx2-1 regulation of Sftpb transcription is unknown. We found that DNA methylation of the mSftpb promoter inversely correlates with known patterns of Sftpb expression in vivo. The mSftpb promoter activity can be manipulated by altering its cytosine methylation status in vitro. Nkx2-1 activation of the mSftpb promoter is impaired by DNA methylation. The unmethylated Sftpb promoter shows an active chromatin structure enriched in the histone modification H3K4me3 (histone 3-lysine 4 trimethylated). The ATP-dependent chromatin remodeling protein Brg1 is recruited to the Sftpb promoter in Sftpb-expressing, but not in non-expressing tissues and cell lines. Brg1 knockdown in MLE-15 cells greatly decreases H3K4me3 levels at the Sftpb promoter region and expression of the Sftpb gene. Brg1 can be co-immunoprecipitated with Nkx2-1 protein. Last, Nkx2-1 and Brg1 with intact ATPase activity are required for mSftpb promoter activation in vitro. Our findings suggest that DNA methylation and chromatin modifications cooperate with Nkx2-1 to regulate Sftpb gene cell specific expression.


Asunto(s)
Epigénesis Genética , Proteínas Nucleares/metabolismo , Proteína B Asociada a Surfactante Pulmonar/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Adenosina Trifosfatasas/metabolismo , Animales , Azacitidina/análogos & derivados , Azacitidina/farmacología , Línea Celular , Cromatina/metabolismo , Islas de CpG/genética , ADN Helicasas/metabolismo , Metilación de ADN , Decitabina , Células Epiteliales/metabolismo , Femenino , Humanos , Pulmón/citología , Masculino , Ratones , Regiones Promotoras Genéticas/genética , Ratas , Factor Nuclear Tiroideo 1 , Activación Transcripcional/efectos de los fármacos
4.
Gene Expr Patterns ; 8(2): 124-39, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18023262

RESUMEN

To identify genes expressed during initiation of lung organogenesis, we generated transcriptional profiles of the prospective lung region of the mouse foregut (mid-foregut) microdissected from embryos at three developmental stages between embryonic day 8.5 (E8.5) and E9.5. This period spans from lung specification of foregut cells to the emergence of the primary lung buds. We identified a number of known and novel genes that are temporally regulated as the lung bud forms. Genes that regulate transcription, including DNA binding factors, co-factors, and chromatin remodeling genes, are the main functional groups that change during lung bud formation. Members of key developmental transcription and growth factor families, not previously described to participate in lung organogenesis, are expressed in the mid-foregut during lung bud induction. These studies also show early expression in the mid-foregut of genes that participate in later stages of lung development. This characterization of the mid-foregut transcriptome provides new insights into molecular events leading to lung organogenesis.


Asunto(s)
Sistema Digestivo/embriología , Sistema Digestivo/metabolismo , Perfilación de la Expresión Génica , Pulmón/embriología , Pulmón/metabolismo , Animales , Sistema Digestivo/citología , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Pulmón/citología , Ratones , Modelos Biológicos , Organogénesis , Embarazo
5.
Sci Rep ; 8(1): 14418, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30258080

RESUMEN

The function of most long noncoding RNAs (lncRNAs) is unknown. However, recent studies reveal important roles of lncRNAs in regulating cancer-related pathways. Human antisense lncRNA-NKX2-1-AS1 partially overlaps the NKX2-1/TTF1 gene within chromosomal region 14q13.3. Amplification of this region and/or differential expression of genes therein are associated with cancer progression. Herein we show higher levels of NKX2-AS1 and NKX2-1 in lung adenocarcinomas relative to non-tumor controls but no correlation between NKX2-1-AS1 and NKX2-1 levels across specimens, or with amplification of the 14q13.3 region, suggesting that NKX2-1-AS1 and NKX2-1 are independently regulated. Loss-and-gain of function experiments showed that NKX2-1-AS1 does not regulate NKX2-1 expression, or nearby genes, but controls genes in trans. Genes up-regulated by NKX2-1-AS1-knockdown belong to cell adhesion and PD-L1/PD-1 checkpoint pathways. NKX2-1-AS1 negatively regulates endogenous CD274/PD-L1, a known target of NKX2-1, and the transcriptional activity of -1kb-CD274 promoter-reporter construct. Furthermore, NKX2-1-AS1 interferes with NKX2-1 protein binding to the CD274-promoter, likely by NKX2-1 protein-NKX2-1-AS1 interactions. Finally, NKX2-1-AS1 negatively regulates cell migration and wound healing, but not proliferation or apoptosis. These findings support potential roles of NKX2-1-AS1 in limiting motility and immune system evasion of lung carcinoma cells, highlighting a novel mechanism that may influence tumorigenic capabilities of lung epithelial cells.


Asunto(s)
Antígeno B7-H1/metabolismo , Movimiento Celular , Proteínas de Neoplasias/metabolismo , ARN sin Sentido/metabolismo , ARN Largo no Codificante/metabolismo , ARN Neoplásico/metabolismo , Factor Nuclear Tiroideo 1/metabolismo , Antígeno B7-H1/genética , Línea Celular Tumoral , Humanos , Proteínas de Neoplasias/genética , ARN sin Sentido/genética , ARN Largo no Codificante/genética , ARN Neoplásico/genética , Factor Nuclear Tiroideo 1/genética
6.
Clin Exp Metastasis ; 35(3): 149-165, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29909489

RESUMEN

Distinct members of the Ets family of transcription factors act as positive or negative regulators of genes involved in cellular proliferation, development, and tumorigenesis. In human lung cancer, increased ETS1 expression is associated with poor prognosis and metastasis. We tested whether ETS1 contributes to lung tumorigenesis by binding to Twist1, a gene involved in tumor cell motility and dissemination. We used a mouse lung cancer model with metastasis driven by conditionally activated Kras and concurrent tumor suppressor Lkb1 loss (KrasG12D/ Lkb1-/- model) and a similar model of lung cancer that does not metastasize, driven by conditionally activated Kras alone (KrasG12D model). We show that Ets1 and Twist1 gene expression differs between KrasG12D tumors (low Ets1 and Twist1 expression) and KrasG12D/Lkb1-/- tumors (high Ets1 and Twist1 expression). In human lung tumors, ETS1 and TWIST1 expression positively correlates and low combined ETS1 and TWIST1 levels are associated with improved survival compared to high levels. Using mouse cell lines derived from KrasG12D and KrasG12D/Lkb1-/- mouse models and the human lung cancer (A549) cell line, we show that ETS1 regulates Twist1 expression. Chromatin immunoprecipitation assays confirm binding of ETS1 to the Twist1 promoter. Overexpression studies show that ETS1 transactivates Twist1 promoter activity in mouse and human cells. Silencing endogenous Ets1 by siRNA in mouse cell lines decreases Twist1 mRNA levels, decreases invasion, and increases cell growth. Ets1 and Twist1 are at the crossroad of several signaling pathways in cancer. Understanding their regulation may inform the development of therapies to impair lung tumor metastasis.


Asunto(s)
Carcinogénesis/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Proteína Proto-Oncogénica c-ets-1/genética , Proteína 1 Relacionada con Twist/genética , Proteínas Quinasas Activadas por AMP , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/genética , Transformación Celular Neoplásica , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Mutación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal
7.
BMC Dev Biol ; 6: 35, 2006 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-16869965

RESUMEN

BACKGROUND: Development of lung alveolar sacs of normal structure and size at late gestation is necessary for the gas exchange process that sustains respiration at birth. Mice lacking the lung differentiation gene T1alpha [T1alpha(-/-)] fail to form expanded alveolar sacs, resulting in respiratory failure at birth. Since little is known about the molecular pathways driving alveolar sacculation, we used expression microarrays to identify genes altered in the abnormal lungs and, by inference, may play roles in normal lung morphogenesis. RESULTS: Altered expression of genes related to cell-cell interaction, such as ephrinA3, are observed in T1alpha(-/-) at E18.5. At term, FosB, Egr1, MPK-1 and Nur77, which can function as negative regulators of the cell-cycle, are down-regulated. This is consistent with the hyperproliferation of peripheral lung cells in term T1alpha (-/-) lungs reported earlier. Biochemical assays show that neither PCNA nor p21 are altered at E18.5. At term in contrast, PCNA is increased, and p21 is decreased. CONCLUSION: This global analysis has identified a number of candidate genes that are significantly altered in lungs in which sacculation is abnormal. Many genes identified were not previously associated with lung development and may participate in formation of alveolar sacs prenatally.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Alveolos Pulmonares/embriología , Animales , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Pulmón/citología , Pulmón/embriología , Pulmón/patología , Glicoproteínas de Membrana/fisiología , Ratones , Ratones Noqueados , Análisis por Matrices de Proteínas/métodos , Alveolos Pulmonares/citología , Alveolos Pulmonares/patología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Insuficiencia Respiratoria/genética , Insuficiencia Respiratoria/patología
8.
J Histochem Cytochem ; 50(1): 33-42, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11748292

RESUMEN

Caveolin-1 is a scaffolding protein component of caveolae, membrane invaginations involved in endocytosis, signal transduction, trans- and intracellular trafficking, and protein sorting. In adult lung, caveolae and caveolin-1 are present in alveolar endothelium and Type I epithelial cells but rarely in Type II cells. We have analyzed patterns of caveolin-1 expression during mouse lung development. Two caveolin-1 mRNAs, full-length and a 5' variant that will translate mainly into caveolin-1alpha and -beta isoforms, are detected by RT-PCR at embryonic day 12 (E12) and afterwards in the developing and adult lung. Immunostaining analysis, starting at E10, shows caveolin-1alpha localized in primitive blood vessels of the forming lung, in an overlapping pattern to the endothelial marker PECAM-1, and later in all blood vessels. Caveolin-1alpha is not detected in fetal or neonatal lung epithelium but is detected in adult epithelial Type I cells. Caveolin-1 was previously shown to be expressed in alveolar Type I cells. These data suggest that expression of caveolin-1 isoforms is differentially regulated in endothelial and epithelial cells during lung development. Caveolin-1alpha is an early marker for lung vasculogenesis, primarily expressed in developing blood vessels. When the lung is fully differentiated postnatally, caveolin-1alpha is also expressed in alveolar Type I cells.


Asunto(s)
Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/metabolismo , Caveolinas/metabolismo , Pulmón/irrigación sanguínea , Pulmón/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Biomarcadores , Vasos Sanguíneos/embriología , Western Blotting , Caveolina 1 , Caveolinas/genética , Endotelio Vascular/embriología , Endotelio Vascular/crecimiento & desarrollo , Endotelio Vascular/metabolismo , Epitelio/crecimiento & desarrollo , Epitelio/metabolismo , Edad Gestacional , Inmunohistoquímica , Pulmón/embriología , Ratones , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Isoformas de Proteínas , Alveolos Pulmonares/embriología , Alveolos Pulmonares/crecimiento & desarrollo , Alveolos Pulmonares/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
J Cell Biochem ; 100(6): 1415-29, 2007 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17167788

RESUMEN

Developmentally important genes have recently been linked to tissue regeneration and epithelial cell repair in neonatal and adult animals in several organs, including liver, skin, prostate, and musculature. We hypothesized that developmentally important genes play roles in lung injury repair in adult mice. Although there is considerable information known about these processes, the specific molecular pathways that mediate injury and regulate tissue repair are not fully elucidated. Using a hyperoxic injury model to study these mechanisms of lung injury and tissue repair, we selected the following genes based upon their known or putative roles in lung development and organogenesis: TTF-1, FGF9, FGF10, BMP4, PDGF-A, VEGF, Ptc, Shh, Sca-1, BCRP, CD45, and Cyclin-D2. Our findings demonstrate that several developmentally important genes (Sca-1, Shh, PDGF-A, VEGF, BCRP, CD45, BMP4, and Cyclin-D2) change during hyperoxic injury and normoxic recovery in mice, suggesting that adult lung may reactivate key developmental regulatory pathways for tissue repair. The mRNA for one gene (TTF-1), unchanged during hyperoxia, was upregulated late in recovery phase. These novel findings provide the basis for testing the efficacy of post-injury lung repair in animals genetically modified to inactivate or express individual molecules.


Asunto(s)
Hiperoxia/fisiopatología , Enfermedades Pulmonares/genética , Pulmón/metabolismo , Recuperación de la Función/fisiología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Ataxina-1 , Ataxinas , Western Blotting , Proteína Morfogenética Ósea 4 , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Línea Celular , Ciclina D2 , Ciclinas/genética , Ciclinas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factor 9 de Crecimiento de Fibroblastos/genética , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/metabolismo , Enfermedades Pulmonares/fisiopatología , Lesión Pulmonar , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Dev Biol ; 256(1): 61-72, 2003 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-12654292

RESUMEN

T1alpha, a differentiation gene of lung alveolar epithelial type I cells, is developmentally regulated and encodes an apical membrane protein of unknown function. Morphological differentiation of type I cells to form the air-blood barrier starts in the last few days of gestation and continues postnatally. Although T1alpha is expressed in the foregut endoderm before the lung buds, T1alpha mRNA and protein levels increase substantially in late fetuses when expression is restricted to alveolar type I cells. We generated T1alpha null mutant mice to study the role of T1alpha in lung development and differentiation and to gain insight into its potential function. Homozygous null mice die at birth of respiratory failure, and their lungs cannot be inflated to normal volumes. Distal lung morphology is altered. In the absence of T1alpha protein, type I cell differentiation is blocked, as indicated by smaller airspaces, many fewer attenuated type I cells, and reduced levels of aquaporin-5 mRNA and protein, a type I cell water channel. Abundant secreted surfactant in the narrowed airspaces, normal levels of surfactant protein mRNAs, and normal patterns and numbers of cells expressing surfactant protein-B suggest that differentiation of type II cells, also alveolar epithelial cells, is normal. Anomalous proliferation of the mesenchyme and epithelium at birth with unchanged numbers of apoptotic cells suggests that loss of T1alpha and/or abnormal morphogenesis of type I cells alter the proliferation rate of distal lung cells, probably by disruption of epithelial-mesenchymal signaling.


Asunto(s)
Pulmón/citología , Pulmón/crecimiento & desarrollo , Proteínas de la Membrana/genética , Animales , Animales Recién Nacidos , Apoptosis , Acuaporina 5 , Acuaporinas/genética , Acuaporinas/metabolismo , Barrera Alveolocapilar , Diferenciación Celular , División Celular , Células Epiteliales/citología , Femenino , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Pulmón/embriología , Masculino , Glicoproteínas de Membrana , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Insuficiencia Respiratoria/genética , Insuficiencia Respiratoria/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA