Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell ; 161(5): 1112-1123, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25959773

RESUMEN

Glutamylation, the most prevalent tubulin posttranslational modification, marks stable microtubules and regulates recruitment and activity of microtubule- interacting proteins. Nine enzymes of the tubulin tyrosine ligase-like (TTLL) family catalyze glutamylation. TTLL7, the most abundant neuronal glutamylase, adds glutamates preferentially to the ß-tubulin tail. Coupled with ensemble and single-molecule biochemistry, our hybrid X-ray and cryo-electron microscopy structure of TTLL7 bound to the microtubule delineates a tripartite microtubule recognition strategy. The enzyme uses its core to engage the disordered anionic tails of α- and ß-tubulin, and a flexible cationic domain to bind the microtubule and position itself for ß-tail modification. Furthermore, we demonstrate that all single-chain TTLLs with known glutamylase activity utilize a cationic microtubule-binding domain analogous to that of TTLL7. Therefore, our work reveals the combined use of folded and intrinsically disordered substrate recognition elements as the molecular basis for specificity among the enzymes primarily responsible for chemically diversifying cellular microtubules.


Asunto(s)
Péptido Sintasas/química , Péptido Sintasas/metabolismo , Secuencia de Aminoácidos , Animales , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Péptido Sintasas/genética , Alineación de Secuencia
2.
Cell ; 147(1): 209-22, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21962517

RESUMEN

The GTPase dynamin catalyzes membrane fission by forming a collar around the necks of clathrin-coated pits, but the specific structural interactions and conformational changes that drive this process remain a mystery. We present the GMPPCP-bound structures of the truncated human dynamin 1 helical polymer at 12.2 Å and a fusion protein, GG, linking human dynamin 1's catalytic G domain to its GTPase effector domain (GED) at 2.2 Å. The structures reveal the position and connectivity of dynamin fragments in the assembled structure, showing that G domain dimers only form between tetramers in sequential rungs of the dynamin helix. Using chemical crosslinking, we demonstrate that dynamin tetramers are made of two dimers, in which the G domain of one molecule interacts in trans with the GED of another. Structural comparison of GG(GMPPCP) to the GG transition-state complex identifies a hydrolysis-dependent powerstroke that may play a role in membrane-remodeling events necessary for fission.


Asunto(s)
Dinamina I/química , Dinamina I/metabolismo , Cristalografía por Rayos X , Humanos , Hidrólisis , Modelos Moleculares , Estructura Terciaria de Proteína
3.
Cell ; 142(3): 433-43, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20691902

RESUMEN

Formation of microtubule architectures, required for cell shape maintenance in yeast, directional cell expansion in plants and cytokinesis in eukaryotes, depends on antiparallel microtubule crosslinking by the conserved MAP65 protein family. Here, we combine structural and single molecule fluorescence methods to examine how PRC1, the human MAP65, crosslinks antiparallel microtubules. We find that PRC1's microtubule binding is mediated by a structured domain with a spectrin-fold and an unstructured Lys/Arg-rich domain. These two domains, at each end of a homodimer, are connected by a linkage that is flexible on single microtubules, but forms well-defined crossbridges between antiparallel filaments. Further, we show that PRC1 crosslinks are compliant and do not substantially resist filament sliding by motor proteins in vitro. Together, our data show how MAP65s, by combining structural flexibility and rigidity, tune microtubule associations to establish crosslinks that selectively "mark" antiparallel overlap in dynamic cytoskeletal networks.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Microtúbulos/metabolismo , Proteínas de Ciclo Celular/química , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Estructura Terciaria de Proteína , Espectrina/metabolismo
4.
Nature ; 449(7158): 87-91, 2007 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-17805295

RESUMEN

Hair cells of the inner ear are mechanosensors that transduce mechanical forces arising from sound waves and head movement into electrochemical signals to provide our sense of hearing and balance. Each hair cell contains at the apical surface a bundle of stereocilia. Mechanoelectrical transduction takes place close to the tips of stereocilia in proximity to extracellular tip-link filaments that connect the stereocilia and are thought to gate the mechanoelectrical transduction channel. Recent reports on the composition, properties and function of tip links are conflicting. Here we demonstrate that two cadherins that are linked to inherited forms of deafness in humans interact to form tip links. Immunohistochemical studies using rodent hair cells show that cadherin 23 (CDH23) and protocadherin 15 (PCDH15) localize to the upper and lower part of tip links, respectively. The amino termini of the two cadherins co-localize on tip-link filaments. Biochemical experiments show that CDH23 homodimers interact in trans with PCDH15 homodimers to form a filament with structural similarity to tip links. Ions that affect tip-link integrity and a mutation in PCDH15 that causes a recessive form of deafness disrupt interactions between CDH23 and PCDH15. Our studies define the molecular composition of tip links and provide a conceptual base for exploring the mechanisms of sensory impairment associated with mutations in CDH23 and PCDH15.


Asunto(s)
Cadherinas/metabolismo , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/metabolismo , Precursores de Proteínas/metabolismo , Animales , Cadherinas/deficiencia , Cadherinas/genética , Línea Celular , Sordera/genética , Dimerización , Genes Recesivos/genética , Cobayas , Humanos , Ratones , Mutación/genética , Unión Proteica , Precursores de Proteínas/genética
5.
Methods ; 55(4): 350-62, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21964395

RESUMEN

Electron crystallography plays a key role in the structural biology of integral membrane proteins (IMPs) by offering one of the most direct means of providing insight into the functional state of these molecular machines in their lipid-associated forms, and also has the potential to facilitate examination of physiologically relevant transitional states and complexes. Helical or tubular crystals, which are the natural product of proteins crystallizing on the surface of a cylindrical vesicle, offer some unique advantages, such as three-dimensional (3D) information from a single view, compared to other crystalline forms. While a number of software packages are available for processing images of helical crystals to produce 3D electron density maps, widespread exploitation of helical image reconstruction is limited by a lack of standardized approaches and the initial effort and specialized expertise required. Our goal is to develop an integrated pipeline to enable structure determination by transmission electron microscopy (TEM) of IMPs in the form of tubular crystals. We describe here the integration of standard Fourier-Bessel helical analysis techniques into Appion, an integrated, database-driven pipeline.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas Bacterianas/química , Microscopía Electrónica de Transmisión/métodos , Programas Informáticos , Cristalografía , Interpretación Estadística de Datos , Humanos , Proteínas de la Membrana/química , Modelos Moleculares , Conformación Proteica
6.
Nature ; 439(7078): 875-8, 2006 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-16382238

RESUMEN

Kinesins are microtubule-based motor proteins that power intracellular transport. Most kinesin motors, exemplified by Kinesin-1, move towards the microtubule plus end, and the structural changes that govern this directional preference have been described. By contrast, the nature and timing of the structural changes underlying the minus-end-directed motility of Kinesin-14 motors (such as Drosophila Ncd) are less well understood. Using cryo-electron microscopy, here we demonstrate that a coiled-coil mechanical element of microtubule-bound Ncd rotates approximately 70 degrees towards the minus end upon ATP binding. Extending or shortening this coiled coil increases or decreases velocity, respectively, without affecting ATPase activity. An unusual Ncd mutant that lacks directional preference shows unstable nucleotide-dependent conformations of its coiled coil, underscoring the role of this mechanical element in motility. These results show that the force-producing conformational change in Ncd occurs on ATP binding, as in other kinesins, but involves the swing of a lever-arm mechanical element similar to that described for myosins.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Rotación , Adenosina Trifosfato/metabolismo , Animales , Microscopía por Crioelectrón , Proteínas de Drosophila/genética , Proteínas de Drosophila/ultraestructura , Cinesinas/genética , Cinesinas/ultraestructura , Microtúbulos/metabolismo , Modelos Biológicos , Modelos Moleculares , Mutación/genética , Conformación Proteica , Relación Estructura-Actividad
7.
Nat Cell Biol ; 24(7): 1088-1098, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35725768

RESUMEN

A long-established strategy for transcription regulation is the tethering of transcription factors to cellular membranes. By contrast, the principal effectors of Hedgehog signalling, the GLI transcription factors, are regulated by microtubules in the primary cilium and the cytoplasm. How GLI is tethered to microtubules remains unclear. Here, we uncover DNA mimicry by the ciliary kinesin KIF7 as a mechanism for the recruitment of GLI to microtubules, wherein the coiled-coil dimerization domain of KIF7, characterized by its striking shape, size and charge similarity to DNA, forms a complex with the DNA-binding zinc fingers in GLI, thus revealing a mode of tethering a DNA-binding protein to the cytoskeleton. GLI increases KIF7 microtubule affinity and consequently modulates the localization of both proteins to microtubules and the cilium tip. Thus, the kinesin-microtubule system is not a passive GLI tether but a regulatable platform tuned by the kinesin-transcription factor interaction. We retooled this coiled-coil-based GLI-KIF7 interaction to inhibit the nuclear and cilium localization of GLI. This strategy can potentially be exploited to downregulate erroneously activated GLI in human cancers.


Asunto(s)
Cinesinas , Factores de Transcripción , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Cinesinas/genética , Microtúbulos/metabolismo , Imitación Molecular , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína con Dedos de Zinc GLI1/genética
8.
J Struct Biol ; 165(3): 169-75, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19114108

RESUMEN

Bacterial ATP binding cassette (ABC) exporters fulfill a wide variety of transmembrane transport roles and are homologous to the human multidrug resistance P-glycoprotein. Recent X-ray structures of the exporters MsbA and Sav1866 have begun to describe the conformational changes that accompany the ABC transport cycle. Here we present cryo-electron microscopy structures of MsbA reconstituted into a lipid bilayer. Using ATPase inhibitors, we captured three nucleotide transition states of the transporter that were subsequently reconstituted into helical arrays. The enzyme-substrate complex (trapped by ADP-aluminum fluoride or AMPPNP) crystallized in a different helical lattice than the enzyme-product complex (trapped by ADP-vanadate). Approximately 20A resolution maps were calculated for each state and revealed MsbA to be a dimer with a large channel between the membrane spanning domains, similar to the outward facing crystal structures of MsbA and Sav1866. This suggests that while there are likely structural differences between the nucleotide transition states, membrane embedded MsbA remains in an outward facing conformation while nucleotide is bound.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Nucleótidos de Adenina/química , Proteínas Bacterianas/química , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/química , Adenosina Trifosfato/química , Adenilil Imidodifosfato/química , Microscopía por Crioelectrón , Cristalización , Cristalografía , Procesamiento de Imagen Asistido por Computador , Liposomas/química , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/química , Salmonella typhimurium/química , Salmonella typhimurium/genética , Vanadatos/química , Vibrio cholerae/química , Vibrio cholerae/genética
9.
J Cell Biol ; 163(5): 963-71, 2003 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-14662742

RESUMEN

KinI kinesins are important in regulating the complex dynamics of the microtubule cytoskeleton. They are unusual in that they depolymerize, rather than move along microtubules. To determine the attributes of KinIs that distinguish them from translocating kinesins, we examined the ATPase activity, microtubule affinity, and three-dimensional microtubule-bound structure of a minimal KinI motor domain. Together, the kinetic, affinity, and structural data lead to the conclusion that on binding to the microtubule lattice, KinIs release ADP and enter a stable, low-affinity, regulated state, from which they do not readily progress through the ATPase cycle. This state may favor detachment, or diffusion of the KinI to its site of action, the microtubule ends. Unlike conventional translocating kinesins, which are microtubule lattice-stimulated ATPases, it seems that with KinIs, nucleotide-mediated modulation of tubulin affinity is only possible when it is coupled to protofilament deformation. This provides an elegant mechanistic basis for their unique depolymerizing activity.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Animales , Microscopía por Crioelectrón , Cinesinas/química , Sustancias Macromoleculares , Microtúbulos/química , Modelos Moleculares , Plasmodium falciparum/metabolismo , Unión Proteica , Conformación Proteica , Proteínas Protozoarias/metabolismo , Tubulina (Proteína)/metabolismo
10.
J Cell Biol ; 157(7): 1187-96, 2002 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-12082079

RESUMEN

MAP2 and tau exhibit microtubule-stabilizing activities that are implicated in the development and maintenance of neuronal axons and dendrites. The proteins share a homologous COOH-terminal domain, composed of three or four microtubule binding repeats separated by inter-repeats (IRs). To investigate how MAP2 and tau stabilize microtubules, we calculated 3D maps of microtubules fully decorated with MAP2c or tau using cryo-EM and helical image analysis. Comparing these maps with an undecorated microtubule map revealed additional densities along protofilament ridges on the microtubule exterior, indicating that MAP2c and tau form an ordered structure when they bind microtubules. Localization of undecagold attached to the second IR of MAP2c showed that IRs also lie along the ridges, not between protofilaments. The densities attributable to the microtubule-associated proteins lie in close proximity to helices 11 and 12 and the COOH terminus of tubulin. Our data further suggest that the evolutionarily maintained differences observed in the repeat domain may be important for the specific targeting of different repeats to either alpha or beta tubulin. These results provide strong evidence suggesting that MAP2c and tau stabilize microtubules by binding along individual protofilaments, possibly by bridging the tubulin interfaces.


Asunto(s)
Citoesqueleto/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas tau/metabolismo , Animales , Sitios de Unión , Bovinos , Humanos , Imagenología Tridimensional , Ratones , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/química , Microtúbulos/ultraestructura , Modelos Biológicos , Modelos Moleculares , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Tubulina (Proteína)/química , Tubulina (Proteína)/aislamiento & purificación , Proteínas tau/química
11.
J Cell Biol ; 163(4): 743-53, 2003 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-14638858

RESUMEN

Caenhorhabditis elegans Unc104 kinesin transports synaptic vesicles at rapid velocities. Unc104 is primarily monomeric in solution, but recent motility studies suggest that it may dimerize when concentrated on membranes. Using cryo-electron microscopy, we observe two conformations of microtubule-bound Unc104: a monomeric state in which the two neck helices form an intramolecular, parallel coiled coil; and a dimeric state in which the neck helices form an intermolecular coiled coil. The intramolecular folded conformation is abolished by deletion of a flexible hinge separating the neck helices, indicating that it acts as a spacer to accommodate the parallel coiled-coil configuration. The neck hinge deletion mutation does not alter motor velocity in vitro but produces a severe uncoordinated phenotype in transgenic C. elegans, suggesting that the folded conformation plays an important role in motor regulation. We suggest that the Unc104 neck regulates motility by switching from a self-folded, repressed state to a dimerized conformation that can support fast processive movement.


Asunto(s)
Proteínas de Caenorhabditis elegans , Cinesinas/química , Proteínas Motoras Moleculares/química , Proteínas del Tejido Nervioso/química , Vesículas Sinápticas/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenilil Imidodifosfato/farmacología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Dominio Catalítico/fisiología , Dimerización , Cinesinas/genética , Cinesinas/ultraestructura , Modelos Moleculares , Proteínas Motoras Moleculares/genética , Datos de Secuencia Molecular , Trastornos del Movimiento/genética , Mutación/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/ultraestructura , Nucleótidos/genética , Nucleótidos/metabolismo , Estructura Terciaria de Proteína/fisiología , Homología de Secuencia de Aminoácido , Vesículas Sinápticas/ultraestructura
12.
Dev Cell ; 49(5): 711-730.e8, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31031197

RESUMEN

The correct localization of Hedgehog effectors to the tip of primary cilia is critical for proper signal transduction. The conserved non-motile kinesin Kif7 defines a "cilium-tip compartment" by localizing to the distal ends of axonemal microtubules. How Kif7 recognizes microtubule ends remains unknown. We find that Kif7 preferentially binds GTP-tubulin at microtubule ends over GDP-tubulin in the mature microtubule lattice, and ATP hydrolysis by Kif7 enhances this discrimination. Cryo-electron microscopy (cryo-EM) structures suggest that a rotated microtubule footprint and conformational changes in the ATP-binding pocket underlie Kif7's atypical microtubule-binding properties. Finally, Kif7 not only recognizes but also stabilizes a GTP-form of tubulin to promote its own microtubule-end localization. Thus, unlike the characteristic microtubule-regulated ATPase activity of kinesins, Kif7 modulates the tubulin mechanochemical cycle. We propose that the ubiquitous kinesin fold has been repurposed in Kif7 to facilitate organization of a spatially restricted platform for localization of Hedgehog effectors at the cilium tip.


Asunto(s)
Cilios/fisiología , Guanosina Trifosfato/metabolismo , Cinesinas/metabolismo , Mecanotransducción Celular , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Humanos , Cinesinas/química , Cinesinas/genética , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Transducción de Señal , Tubulina (Proteína)/genética
13.
Curr Biol ; 14(5): 363-71, 2004 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-15028210

RESUMEN

BACKGROUND: MAP2 and tau are abundant microtubule-associated proteins (MAPs) in neurons. The development of neuronal dendrites and axons requires a dynamic interaction between microtubules and actin filaments. MAPs represent good candidates to mediate such interactions. Although MAP2c and tau have similar, well-characterized microtubule binding activities, their actin interaction is poorly understood. RESULTS: Here, we show by using a cosedimentation assay that MAP2c binds F-actin. Upon actin binding, MAP2c organizes F-actin into closely packed actin bundles. Moreover, we show by using a deletion approach that MAP2c's microtubule binding domain (MTBD) is both necessary and sufficient for both F-actin binding and bundling activities. Surprisingly, even though the MAP2 and tau MTBDs share high sequence homology and possess similar microtubule binding activities, tau is unable to bind or bundle F-actin. Furthermore, experiments with chimeric proteins demonstrate that the actin binding activity fully correlates with the ability to promote neurite initiation in neuroblastoma cells. CONCLUSIONS: These results provide the first demonstration that the MAP2c and tau MTBD domains exhibit distinct properties, diverging in actin binding and neurite initiation activities. These results implicate a novel actin function for MAP2c in neuronal morphogenesis and furthermore suggest that actin interactions could contribute to functional differences between MAP2 and tau in neurons.


Asunto(s)
Actinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Proteínas tau/metabolismo , Animales , Sitios de Unión/fisiología , Células Cultivadas , Centrifugación , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Inmunohistoquímica , Microscopía Electrónica , Microtúbulos/ultraestructura , Morfogénesis/fisiología , Neuronas/fisiología , Proteínas Recombinantes de Fusión/metabolismo
14.
Curr Biol ; 27(23): 3666-3675.e6, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29153323

RESUMEN

The macromolecular kinetochore functions to generate interactions between chromosomal DNA and spindle microtubules [1]. To facilitate chromosome movement and segregation, kinetochores must maintain associations with both growing and shrinking microtubule ends. It is critical to define the proteins and their properties that allow kinetochores to associate with dynamic microtubules. The kinetochore-localized human Ska1 complex binds to microtubules and tracks with depolymerizing microtubule ends [2]. We now demonstrate that the Ska1 complex also autonomously tracks with growing microtubule ends in vitro, a key property that would allow this complex to act at kinetochores to mediate persistent associations with dynamic microtubules. To define the basis for Ska1 complex interactions with dynamic microtubules, we investigated the tubulin-binding properties of the Ska1 microtubule binding domain. In addition to binding to the microtubule lattice and dolastatin-induced protofilament-like structures, we demonstrate that the Ska1 microtubule binding domain can associate with soluble tubulin heterodimers and promote assembly of oligomeric ring-like tubulin structures. We generated mutations on distinct surfaces of the Ska1 microtubule binding domain that disrupt binding to soluble tubulin but do not prevent microtubule binding. These mutants display compromised microtubule tracking activity in vitro and result in defective chromosome alignment and mitotic progression in cells using a CRISPR/Cas9-based replacement assay. Our work supports a model in which multiple surfaces of Ska1 interact with diverse tubulin substrates to associate with dynamic microtubule polymers and facilitate optimal chromosome segregation.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas Cromosómicas no Histona/genética , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Tubulina (Proteína)/metabolismo
15.
J Mol Biol ; 351(2): 266-79, 2005 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-16005888

RESUMEN

We have conducted a proteomic analysis of the 80S cytosolic ribosome from the eukaryotic green alga Chlamydomonas reinhardtii, and accompany this with a cryo-electron microscopy structure of the ribosome. Proteins homologous to all but one rat 40S subunit protein, including a homolog of RACK1, and all but three rat 60S subunit proteins were identified as components of the C. reinhardtii ribosome. Expressed Sequence Tag (EST) evidence and annotation of the completed C. reinhardtii genome identified genes for each of the four proteins not identified by proteomic analysis, showing that algae potentially have a complete set of orthologs to mammalian 80S ribosomal proteins. Presented at 25A, the algal 80S ribosome is very similar in structure to the yeast 80S ribosome, with only minor distinguishable differences. These data show that, although separated by billions of years of evolution, cytosolic ribosomes from photosynthetic organisms are highly conserved with their yeast and animal counterparts.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Ribosomas/química , Proteínas Algáceas/química , Animales , Arabidopsis/metabolismo , Chlorophyta/metabolismo , Biología Computacional , Secuencia Conservada , Microscopía por Crioelectrón , Citoplasma/metabolismo , Citosol/metabolismo , Electroforesis en Gel de Poliacrilamida , Etiquetas de Secuencia Expresada , Análisis de Fourier , Genoma , Modelos Moleculares , Sistemas de Lectura Abierta , Péptidos/química , Proteómica , ARN Ribosómico/química , Ratas
16.
Mol Biol Cell ; 27(8): 1197-203, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26941333

RESUMEN

During cell division, kinetochores must remain tethered to the plus ends of dynamic microtubule polymers. However, the molecular basis for robust kinetochore-microtubule interactions remains poorly understood. The conserved four-subunit Ndc80 complex plays an essential and direct role in generating dynamic kinetochore-microtubule attachments. Here we compare the binding of theCaenorhabditis elegansand human Ndc80 complexes to microtubules at high resolution using cryo-electron microscopy reconstructions. Despite the conserved roles of the Ndc80 complex in diverse organisms, we find that the attachment mode of these complexes for microtubules is distinct. The human Ndc80 complex binds every tubulin monomer along the microtubule protofilament, whereas theC. elegansNdc80 complex binds more tightly to ß-tubulin. In addition, theC. elegansNdc80 complex tilts more toward the adjacent protofilament. These structural differences in the Ndc80 complex between different species may play significant roles in the nature of kinetochore-microtubule interactions.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Microscopía por Crioelectrón , Proteínas del Citoesqueleto , Cinetocoros/metabolismo , Modelos Moleculares , Conformación Proteica , Tubulina (Proteína)/metabolismo
17.
Nat Cell Biol ; 16(9): 852-63, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25173975

RESUMEN

Proper microtubule nucleation during cell division requires augmin, a microtubule-associated hetero-octameric protein complex. In current models, augmin recruits γ-tubulin, through the carboxyl terminus of its hDgt6 subunit to nucleate microtubules within spindles. However, augmin's biochemical complexity has restricted analysis of its structural organization and function. Here, we reconstitute human augmin and show that it is a Y-shaped complex that can adopt multiple conformations. Further, we find that a dimeric sub-complex retains in vitro microtubule-binding properties of octameric complexes, but not proper metaphase spindle localization. Addition of octameric augmin complexes to Xenopus egg extracts promotes microtubule aster formation, an activity enhanced by Ran-GTP. This activity requires microtubule binding, but not the characterized hDgt6 γ-tubulin-recruitment domain. Tetrameric sub-complexes induce asters, but activity and microtubule bundling within asters are reduced compared with octameric complexes. Together, our findings shed light on augmin's structural organization and microtubule-binding properties, and define subunits required for its function in organizing microtubule-based structures.


Asunto(s)
Proteínas Asociadas a Microtúbulos/química , Animales , Sistema Libre de Células , Escherichia coli , Humanos , Metafase , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/ultraestructura , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Unión Proteica , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Xenopus laevis
19.
Science ; 330(6004): 673-7, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-21030658

RESUMEN

Ribosomes are self-assembling macromolecular machines that translate DNA into proteins, and an understanding of ribosome biogenesis is central to cellular physiology. Previous studies on the Escherichia coli 30S subunit suggest that ribosome assembly occurs via multiple parallel pathways rather than through a single rate-limiting step, but little mechanistic information is known about this process. Discovery single-particle profiling (DSP), an application of time-resolved electron microscopy, was used to obtain more than 1 million snapshots of assembling 30S subunits, identify and visualize the structures of 14 assembly intermediates, and monitor the population flux of these intermediates over time. DSP results were integrated with mass spectrometry data to construct the first ribosome-assembly mechanism that incorporates binding dependencies, rate constants, and structural characterization of populated intermediates.


Asunto(s)
Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Procesamiento de Imagen Asistido por Computador , Cinética , Espectrometría de Masas , Microscopía Electrónica/métodos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , ARN Bacteriano/química , ARN Ribosómico/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas Pequeñas Bacterianas/química
20.
J Cell Biol ; 185(1): 51-7, 2009 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-19332892

RESUMEN

Kinesin motor proteins use adenosine triphosphate hydrolysis to do work on microtubules (MTs). Most kinesins walk along the MT, but class 13 kinesins instead uniquely recognize MT ends and depolymerize MT protofilaments. We have used electron microscopy (EM) to understand the molecular interactions by which kinesin 13 performs these tasks. Although a construct of only the motor domain of kinesin 13 binds to every heterodimer of a tubulin ring, a construct containing the neck and the motor domain occupies alternate binding sites. Likewise, EM maps of the dimeric full-length (FL) protein exhibit alternate site binding but reveal density for only one of two motor heads. These results indicate that the second head of dimeric kinesin 13 does not have access to adjacent binding sites on the curved protofilament and suggest that the neck alone is sufficient to obstruct access. Additionally, the FL construct promotes increased stacking of rings compared with other constructs. Together, these data suggest a model for kinesin 13 depolymerization in which increased efficiency is achieved by binding of one kinesin 13 molecule to adjacent protofilaments.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Animales , Sitios de Unión , Cricetinae , Cricetulus , Humanos , Cinesinas/química , Microtúbulos/ultraestructura , Plasmodium falciparum , Estructura Terciaria de Proteína , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA