Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
EMBO J ; 39(15): e103790, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32567735

RESUMEN

Tumour-associated microglia/macrophages (TAM) are the most numerous non-neoplastic populations in the tumour microenvironment in glioblastoma multiforme (GBM), the most common malignant brain tumour in adulthood. The mTOR pathway, an important regulator of cell survival/proliferation, is upregulated in GBM, but little is known about the potential role of this pathway in TAM. Here, we show that GBM-initiating cells induce mTOR signalling in the microglia but not bone marrow-derived macrophages in both in vitro and in vivo GBM mouse models. mTOR-dependent regulation of STAT3 and NF-κB activity promotes an immunosuppressive microglial phenotype. This hinders effector T-cell infiltration, proliferation and immune reactivity, thereby contributing to tumour immune evasion and promoting tumour growth in mouse models. The translational value of our results is demonstrated in whole transcriptome datasets of human GBM and in a novel in vitro model, whereby expanded-potential stem cells (EPSC)-derived microglia-like cells are conditioned by syngeneic patient-derived GBM-initiating cells. These results raise the possibility that microglia could be the primary target of mTOR inhibition, rather than the intrinsic tumour cells in GBM.


Asunto(s)
Neoplasias Encefálicas/inmunología , Glioblastoma/inmunología , Tolerancia Inmunológica , Microglía/inmunología , Proteínas de Neoplasias/inmunología , Serina-Treonina Quinasas TOR/inmunología , Microambiente Tumoral/inmunología , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioblastoma/genética , Glioblastoma/patología , Humanos , Ratones , Ratones Noqueados , Microglía/patología , Proteínas de Neoplasias/genética , Serina-Treonina Quinasas TOR/genética , Microambiente Tumoral/genética
2.
Pract Neurol ; 24(3): 188-199, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38124186

RESUMEN

Neurodegeneration refers to progressive dysfunction or loss of selectively vulnerable neurones from brain and spinal cord regions. Despite important advances in fluid and imaging biomarkers, the definitive diagnosis of most neurodegenerative diseases still relies on neuropathological examination. Not only has careful clinicopathological correlation shaped current clinical diagnostic criteria and informed our understanding of the natural history of neurodegenerative diseases, but it has also identified conditions with important public health implications, including variant Creutzfeldt-Jakob disease, iatrogenic amyloid-ß and chronic traumatic encephalopathy. Neuropathological examination may also point to previously unsuspected genetic diagnoses with potential implications for living relatives. Moreover, detailed neuropathological assessment is crucial for research studies that rely on curated postmortem tissue to investigate the molecular mechanisms responsible for neurodegeneration and for biomarker discovery and validation. This review aims to elucidate the hallmark pathological features of neurodegenerative diseases commonly seen in general neurology clinics, such as Alzheimer's disease and Parkinson's disease; rare but well-known diseases, including progressive supranuclear palsy, corticobasal degeneration and multiple system atrophy and more recently described entities such as chronic traumatic encephalopathy and age-related tau astrogliopathy.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/patología , Neurólogos , Encéfalo/patología , Encéfalo/diagnóstico por imagen
3.
Histopathology ; 75(3): 299-311, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30820974

RESUMEN

After nearly a century of histological classification of central nervous system tumours, the 2016 revised WHO classification has incorporated molecular features with clinical and prognostic relevance into brain tumour classification. In this review, we discuss the latest integrated phenotype-genotype approach to the most common intrinsic brain tumours in adults and children. The key genetic mutations and abnormalities, essential to the definition of these tumours, in line with the current WHO classification are described. Practical dilemmas, including 'difficult' tumours, the utility of DNA methylation classifiers and relevant recent advances post-WHO 2016 consensus are also discussed.


Asunto(s)
Neoplasias del Sistema Nervioso Central/clasificación , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/genética , Genotipo , Humanos , Fenotipo
4.
Int J Gynecol Pathol ; 36(2): 172-179, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27362902

RESUMEN

A 3-tier histopathologic scoring system, the chemotherapy response score (CRS), was previously devised for reporting the histologic response to neoadjuvant chemotherapy in interval debulking surgery specimens of stage IIIc/IV tuboovarian high-grade serous carcinoma. This has been shown to predict the outcome and offer additional information to other methods of assessing the treatment response. In the present study, the reproducibility of this scoring system was assessed by determining the interobserver agreement among reporting pathologists. A total of 5 groups each comprising 3 pathologists with different levels of expertise were selected. The participants underwent an online tutorial on how to apply the CRS system. 40 cases (38 cases in 2 appraiser groups) were scored individually by each of the 15 pathologists. The interobserver reproducibility was calculated using Fleiss' κ, Kendall's coefficient of concordance, and the absolute agreement between (a) individual pathologists within 1 group, (b) with the majority score agreement between all groups, and (c) with all individual scores. The CRS system was found to be highly reproducible among all the pathologists' groups (κ=0.761). The agreement in identifying the group of patients with the best response to chemotherapy was exceptionally high (κ=0.926). We conclude that CRS has a high interobserver reproducibility, especially in identifying the subgroup of patients with the best chemotherapy response, justifying its inclusion in clinical trials and reporting practice.


Asunto(s)
Cistadenocarcinoma Seroso/tratamiento farmacológico , Oncología Médica/métodos , Neoplasias Ováricas/tratamiento farmacológico , Quimioterapia Adyuvante , Femenino , Humanos , Terapia Neoadyuvante , Variaciones Dependientes del Observador , Pronóstico , Reproducibilidad de los Resultados , Resultado del Tratamiento
5.
Cerebellum ; 15(6): 789-828, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26439486

RESUMEN

The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum.


Asunto(s)
Cerebelo/embriología , Cerebelo/crecimiento & desarrollo , Animales , Cerebelo/citología , Cerebelo/fisiopatología , Consenso , Humanos , Neurogénesis/fisiología , Neuronas/citología , Neuronas/fisiología
6.
Neurooncol Adv ; 5(1): vdad139, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38106649

RESUMEN

Background: Deep Learning (DL) can predict molecular alterations of solid tumors directly from routine histopathology slides. Since the 2021 update of the World Health Organization (WHO) diagnostic criteria, the classification of brain tumors integrates both histopathological and molecular information. We hypothesize that DL can predict molecular alterations as well as WHO subtyping of brain tumors from hematoxylin and eosin-stained histopathology slides. Methods: We used weakly supervised DL and applied it to three large cohorts of brain tumor samples, comprising N = 2845 patients. Results: We found that the key molecular alterations for subtyping, IDH and ATRX, as well as 1p19q codeletion, were predictable from histology with an area under the receiver operating characteristic curve (AUROC) of 0.95, 0.90, and 0.80 in the training cohort, respectively. These findings were upheld in external validation cohorts with AUROCs of 0.90, 0.79, and 0.87 for prediction of IDH, ATRX, and 1p19q codeletion, respectively. Conclusions: In the future, such DL-based implementations could ease diagnostic workflows, particularly for situations in which advanced molecular testing is not readily available.

7.
NAR Cancer ; 3(1): zcab009, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34316702

RESUMEN

Glioblastoma (GBM) is the most common and aggressive intrinsic brain tumour in adults. Epigenetic mechanisms controlling normal brain development are often dysregulated in GBM. Among these, BMI1, a structural component of the Polycomb Repressive Complex 1 (PRC1), which promotes the H2AK119ub catalytic activity of Ring1B, is upregulated in GBM and its tumorigenic role has been shown in vitro and in vivo. Here, we have used protein and chromatin immunoprecipitation followed by mass spectrometry (MS) analysis to elucidate the protein composition of PRC1 in GBM and transcriptional silencing of defining interactors in primary patient-derived GIC lines to assess their functional impact on GBM biology. We identify novel regulatory functions in mRNA splicing and cholesterol transport which could represent novel targetable mechanisms in GBM.

9.
Nat Commun ; 12(1): 6130, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675201

RESUMEN

Epigenetic mechanisms which play an essential role in normal developmental processes, such as self-renewal and fate specification of neural stem cells (NSC) are also responsible for some of the changes in the glioblastoma (GBM) genome. Here we develop a strategy to compare the epigenetic and transcriptional make-up of primary GBM cells (GIC) with patient-matched expanded potential stem cell (EPSC)-derived NSC (iNSC). Using a comparative analysis of the transcriptome of syngeneic GIC/iNSC pairs, we identify a glycosaminoglycan (GAG)-mediated mechanism of recruitment of regulatory T cells (Tregs) in GBM. Integrated analysis of the transcriptome and DNA methylome of GBM cells identifies druggable target genes and patient-specific prediction of drug response in primary GIC cultures, which is validated in 3D and in vivo models. Taken together, we provide a proof of principle that this experimental pipeline has the potential to identify patient-specific disease mechanisms and druggable targets in GBM.


Asunto(s)
Neoplasias Encefálicas/genética , Glioblastoma/genética , Células Madre Neoplásicas/metabolismo , Células-Madre Neurales/metabolismo , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/fisiopatología , Diferenciación Celular , Metilación de ADN , Epigénesis Genética , Epigenómica , Glioblastoma/metabolismo , Glioblastoma/fisiopatología , Humanos , Ratones , Transcripción Genética
10.
Oncogene ; 39(12): 2523-2538, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31988455

RESUMEN

Glioblastoma (GBM) is the most common and most aggressive intrinsic brain tumour in adults. Integrated transcriptomic and epigenomic analyses of glioblastoma initiating cells (GIC) in a mouse model uncovered a novel epigenetic regulation of EfnA5. In this model, Bmi1 enhances H3K27me3 at the EfnA5 locus and reinforces repression of selected target genes in a cellular context-dependent fashion. EfnA5 mediates Bmi1-dependent proliferation and invasion in vitro and tumour formation in an allograft model. Importantly, we show that this novel Polycomb feed-forward loop is also active in human GIC and we provide pre-clinical evidence of druggability of the EFNA5 signalling pathway in GBM xenografts overexpressing Bmi1.


Asunto(s)
Efrina-A5/metabolismo , Glioblastoma/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Animales , Antihipertensivos/farmacología , Proliferación Celular , Doxazosina/farmacología , Sistemas de Liberación de Medicamentos , Efrina-A5/antagonistas & inhibidores , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Histonas/metabolismo , Humanos , Lisina/metabolismo , Ratones , Ratones Transgénicos , Invasividad Neoplásica , Células-Madre Neurales/metabolismo , Neurogénesis , Complejo Represivo Polycomb 1/genética , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA