Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(14): 10124-10141, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557045

RESUMEN

Phenoxyimine (FI)-nickel(II)(2-tolyl)(DMAP) compounds were synthesized and evaluated as precatalysts for the C(sp2)-C(sp3) Suzuki-Miyaura cross coupling of (hetero)arylboronic acids with alkyl bromides. With 5 mol % of the optimal (MeOMeFI)Ni(Aryl)(DMAP) precatalyst, the scope of the cross-coupling reaction was established and included a variety of (hetero)arylboronic acids and alkyl bromides (>50 examples, 33-97% yield). A ß-hydride elimination-reductive elimination sequence from reaction with potassium isopropoxide base, yielding a potassium (FI)nickel(0)ate, was identified as a catalyst activation pathway that is responsible for halogen atom abstraction from the alkyl bromide. A combination of NMR and EPR spectroscopies identified (FI)nickel(II)-aryl complexes as the resting state during catalysis with no evidence for long-lived organic radical or odd-electron nickel intermediates. These data establish that the radical chain is short-lived and undergoes facile termination and also support a "recovering radical chain" process whereby the (FI)nickel(II)-aryl compound continually (re)initiates the radical chain. Kinetic studies established that the rate of C(sp2)-C(sp3) product formation was proportional to the concentration of the (FI)nickel(II)-aryl resting state that captures the alkyl radical for chain propagation. The proposed mechanism involves two key and concurrently operating catalytic cycles; the first involving a nickel(I/II/III) radical propagation cycle consisting of radical capture at (FI)nickel(II)-aryl, C(sp2)-C(sp3) reductive elimination, bromine atom abstraction from C(sp3)-Br, and transmetalation; and the second involving an off-cycle catalyst recovery process by slow (FI)nickel(II)-aryl → (FI)nickel(0)ate conversion for nickel(I) regeneration.

2.
J Am Chem Soc ; 145(31): 17029-17041, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37490763

RESUMEN

The mechanism of phenoxyimine (FI)-cobalt-catalyzed C(sp2)-C(sp3) Suzuki-Miyaura cross-coupling was studied using a combination of kinetic measurements and catalytic and stoichiometric experiments. A series of dimeric (FI)cobalt(II) bromide complexes, [(4-CF3PhFI)CoBr]2, [(4-OMePhFI)CoBr]2, and [(2,6-diiPrPhFI)CoBr]2, were isolated and characterized by 1H and 19F NMR spectroscopies, solution and solid-state magnetic susceptibility, electron paramagnetic resonance (EPR) spectroscopy, X-ray crystallography, and diffusion-ordered NMR spectroscopy (DOSY). One complex, [(4-CF3PhFI)CoBr]2, was explored as a single-component precatalyst for C(sp2)-C(sp3) Suzuki-Miyaura cross-coupling. Addition of potassium methoxide to [(4-CF3PhFI)CoBr]2 generated the corresponding (FI)cobalt(II) methoxide complex as determined by 1H and 19F NMR and EPR spectroscopies. These spectroscopic signatures were used to identify this compound as the resting state during catalytic C(sp2)-C(sp3) coupling. Variable time normalization analysis (VTNA) of in situ catalytic 19F NMR spectroscopic data was used to establish an experimental rate law that was first-order in a (FI)cobalt(II) precatalyst, zeroth-order in the alkyl halide, and first-order in an activated potassium methoxide-aryl boronate complex. These findings are consistent with turnover-limiting transmetalation that occurs prior to activation of the alkyl bromide electrophile. The involvement of boronate intermediates in transmetalation was corroborated by Hammett studies of electronically differentiated aryl boronic esters. Together, a cobalt(II)/cobalt(III) catalytic cycle was proposed that proceeds through a "boronate"-type mechanism.

3.
Chem Rev ; 121(1): 3-79, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33085458

RESUMEN

The carbon-carbon (C-C) bond cleavage of cyclopropanols is a wide area of research with much current activity. This review highlights new developments in this area over the past two decades. A summary is made of the three main reactivity modes, namely, homoenolate chemistry, ß-keto radical chemistry, and acid-catalyzed ring-opening, as well as all other methods for the C-C bond cleavage and functionalization of cyclopropanols, including base-mediated ring-opening, metal-catalyzed C-C insertions and eliminations, oxidative fragmentation using hypervalent iodine reagents, reactions of donor-acceptor cyclopropanols, and pericylic reactions. Emphasis is placed on the synthetic utility of cyclopropanols and related derivatives, which have emerged as unique three-carbon synthons.

4.
Angew Chem Int Ed Engl ; 62(51): e202313848, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37917119

RESUMEN

Evaluation of the relative rates of the cobalt-catalyzed C(sp2 )-C(sp3 ) Suzuki-Miyaura cross-coupling between the neopentylglycol ester of 4-fluorophenylboronic acid and N-Boc-4-bromopiperidine established that smaller N-alkyl substituents on the phenoxyimine (FI) supporting ligand accelerated the overall rate of the reaction. This trend inspired the design of optimal cobalt catalysts with phenoxyoxazoline (FOx) and phenoxythiazoline (FTz) ligands. An air-stable cobalt(II) precatalyst, (FTz)CoBr(py)3 was synthesized and applied to the cross-coupling of an indole-5-boronic ester nucleophile with a piperidine-4-bromide electrophile that is relevant to the synthesis of reported toll-like receptor (TLR) 7/8 antagonist molecules including afimetoran. Addition of excess KOMe⋅B(Oi Pr)3 improved catalyst lifetime due to attenuation of alkoxide basicity that otherwise resulted in demetallation of the FI chelate. A first-order dependence on the cobalt precatalyst and a saturation regime in nucleophile were observed, supporting turnover-limiting transmetalation and the origin of the observed trends in N-imine substitution.

5.
Org Biomol Chem ; 20(30): 5933-5937, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35315852

RESUMEN

Quaternary α-(hetero)arylnitriles are desirable biologically relevant products, however the existing methods for their synthesis can be unselective or require the use of undesirable reagents, such as cyanide salts. Herein we report a one-pot method for transnitrilation-mediated decyanation-metalation of disubstituted malononitriles, followed by treatment with (hetero)aryl electrophiles to access quaternary α-(hetero)arylnitrile products. A number of products were prepared using this method (34 examples, 27-99% yield). This method highlights the usefulness of malononitriles as precursors for alkylnitrile-containing compounds.


Asunto(s)
Sales (Química) , Catálisis , Indicadores y Reactivos , Nitrilos
6.
J Am Chem Soc ; 143(27): 10422-10428, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34197103

RESUMEN

The design of new ligands for cross-coupling is essential for developing new catalytic reactions that access valuable products such as pharmaceuticals. In this report, we exploit the reactivity of nitrile-containing additives in Ni catalysis to design a benzonitrile-containing ligand for cross-coupling involving tertiary nucleophiles. Kinetic and Hammett studies are used to elucidate the role of the optimized ligand, which demonstrate that the benzonitrile moiety acts as an electron-acceptor to promote reductive elimination over ß-hydride elimination and stabilize low-valent Ni. With these conditions, a protocol for decyanation-metalation and Ni-catalyzed arylation is conducted, enabling access to quaternary α-arylnitriles from disubstituted malononitriles.

7.
J Am Chem Soc ; 142(30): 13246-13254, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32609494

RESUMEN

The ability to understand and predict reactivity is essential for the development of new reactions. In the context of Ni-catalyzed C(sp3)-O functionalization, we have developed a unique strategy employing activated cyclopropanols to aid the design and optimization of a redox-active leaving group for C(sp3)-O arylation. In this chemistry, the cyclopropane ring acts as a reporter of leaving-group reactivity, since the ring-opened product is obtained under polar (2e) conditions, and the ring-closed product is obtained under radical (1e) conditions. Mechanistic studies demonstrate that the optimal leaving group is redox-active and are consistent with a Ni(I)/Ni(III) catalytic cycle. The optimized reaction conditions are also used to synthesize a number of arylcyclopropanes, which are valuable pharmaceutical motifs.

8.
J Am Chem Soc ; 141(49): 19257-19262, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31710473

RESUMEN

Herein, we report a Ni-catalyzed reductive coupling for the synthesis of benzonitriles from aryl (pseudo)halides and an electrophilic cyanating reagent, 2-methyl-2-phenyl malononitrile (MPMN). MPMN is a bench-stable, carbon-bound electrophilic CN reagent that does not release cyanide under the reaction conditions. A variety of medicinally relevant benzonitriles can be made in good yields. Addition of NaBr to the reaction mixture allows for the use of more challenging aryl electrophiles such as aryl chlorides, tosylates, and triflates. Mechanistic investigations suggest that NaBr plays a role in facilitating oxidative addition with these substrates.

9.
J Am Chem Soc ; 139(33): 11357-11360, 2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28809490

RESUMEN

Metal homoenolates, produced via C-C bond cleavage of cyclopropanols, have been extensively investigated as nucleophiles for the synthesis of ß-substituted carbonyl derivatives. Herein, we demonstrate that zinc homoenolates can react as carbonyl-electrophiles in the presence of nucleophilic amines to yield highly valuable trans-cyclopropylamines in good yields and high diastereoselectivities. GSK2879552, a lysine demethylase 1 inhibitor currently in clinical trials for the treatment of small cell lung carcinoma, was synthesized using this strategy.

10.
Org Lett ; 24(2): 619-624, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34978834

RESUMEN

A Ni-catalyzed cross-coupling of readily accessible O-alkyl xanthate esters or thiocarbonyl imidazolides and organozinc reagents for the synthesis of thiocarboxylic acid derivatives has been developed. This method benefits from a fast reaction time, mild reaction conditions, and ease of starting material synthesis. The use of transition-metal catalysis to access a diverse range of thiocarbonyl-containing compounds provides a useful complementary approach when compared with previously established methodologies.

11.
ACS Catal ; 12(3): 1905-1918, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36034100

RESUMEN

Cobalt(II) halides in combination with phenoxy-imine (FI) ligands generated efficient precatalysts in situ for the C(sp2)-C(sp3) Suzuki-Miyaura cross coupling between alkyl bromides and neopentylglycol (hetero)arylboronic esters. The protocol enabled efficient C-C bond formation with a host of nucleophiles and electrophiles (36 examples, 34-95%) with precatalyst loadings of 5 mol%. Studies with alkyl halide electrophiles that function as radical clocks support the intermediacy of alkyl radicals during the course of the catalytic reaction. The improved performance of the FI-cobalt catalyst was correlated with decreased lifetimes of cage-escaped radicals as compared to diamine-type ligands. Studies of the phenoxy(imine)-cobalt coordination chemistry validate the L,X interaction leading to the discovery of an optimal, well defined, air-stable mono-FI cobalt(II) precatalyst structure.

12.
Chem Commun (Camb) ; 56(83): 12538-12541, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33030175

RESUMEN

Herein, we describe a protocol for the ring-opening arylation of 1-arylcyclopropyl tosylates, in which boronic acids promote ring-opening and a Ni catalyst facilitates arylation in high regioselectivity. A number of 2-arylated allyl derivatives are synthesized, which are relevant motifs found in biologically active molecules.

13.
Org Lett ; 21(21): 8805-8809, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31626553

RESUMEN

Metal homoenolates are valuable synthetic intermediates which provide access to ß-functionalized ketones. In this report, we disclose a Ni-catalyzed ß-alkylation reaction of cyclopropanol-derived homoenolates using redox-active N-hydroxyphthalimide (NHPI) esters as the alkylating reagents. The reaction is compatible with 1°, 2°, and 3° NHPI esters. Mechanistic studies imply radical activation of the NHPI ester and 2e ß-carbon elimination occurring on the cyclopropanol.

14.
Org Lett ; 21(20): 8409-8413, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31591894

RESUMEN

Cyclopropylamines are prevalent in pharmaceuticals and agrochemicals. Herein, we report the synthesis of trans-2-substituted cyclopropylamines in high diastereoselectivity from readily available α-chloroaldehydes. The reaction proceeds via trapping of an electrophilic zinc homoenolate with an amine followed by ring closure to generate the cyclopropylamine. We have also observed that cyclopropylamine cis/trans-isomerization occurs in the presence of zinc halide salts and that this process can be turned off by the addition of a polar aprotic cosolvent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA