Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Psychiatry Neurosci ; 46(3): E402-E414, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34077150

RESUMEN

Background: Bipolar disorder is characterized by cyclical alternation between mania and depression, often comorbid with psychosis and suicide. Compared with other medications, the mood stabilizer lithium is the most effective treatment for the prevention of manic and depressive episodes. However, the pathophysiology of bipolar disorder and lithium's mode of action are yet to be fully understood. Evidence suggests a change in the balance of excitatory and inhibitory activity, favouring excitation in bipolar disorder. In the present study, we sought to establish a holistic understanding of the neuronal consequences of lithium exposure in mouse cortical neurons, and to identify underlying mechanisms of action. Methods: We used a range of technical approaches to determine the effects of acute and chronic lithium treatment on mature mouse cortical neurons. We combined RNA screening and biochemical and electrophysiological approaches with confocal immunofluorescence and live-cell calcium imaging. Results: We found that only chronic lithium treatment significantly reduced intracellular calcium flux, specifically by activating metabotropic glutamatergic receptor 5. This was associated with altered phosphorylation of protein kinase C and glycogen synthase kinase 3, reduced neuronal excitability and several alterations to synapse function. Consequently, lithium treatment shifts the excitatory­inhibitory balance toward inhibition. Limitations: The mechanisms we identified should be validated in future by similar experiments in whole animals and human neurons. Conclusion: Together, the results revealed how lithium dampens neuronal excitability and the activity of the glutamatergic network, both of which are predicted to be overactive in the manic phase of bipolar disorder. Our working model of lithium action enables the development of targeted strategies to restore the balance of overactive networks, mimicking the therapeutic benefits of lithium but with reduced toxicity.


Asunto(s)
Corteza Cerebral/citología , Compuestos de Litio/uso terapéutico , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Animales , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/metabolismo , Calcio/metabolismo , Células Cultivadas , Compuestos de Litio/administración & dosificación , Compuestos de Litio/farmacología , Ratones , Neuronas/metabolismo , Proteína Quinasa C/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Sinapsis/metabolismo
2.
J Neurosci ; 36(28): 7415-27, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27413152

RESUMEN

UNLABELLED: Pathologic inclusions define α-synucleinopathies that include Parkinson's disease (PD). The most common genetic cause of PD is the G2019S LRRK2 mutation that upregulates LRRK2 kinase activity. However, the interaction between α-synuclein, LRRK2, and the formation of α-synuclein inclusions remains unclear. Here, we show that G2019S-LRRK2 expression, in both cultured neurons and dopaminergic neurons in the rat substantia nigra pars compact, increases the recruitment of endogenous α-synuclein into inclusions in response to α-synuclein fibril exposure. This results from the expression of mutant G2019S-LRRK2, as overexpression of WT-LRRK2 not only does not increase formation of inclusions but reduces their abundance. In addition, treatment of primary mouse neurons with LRRK2 kinase inhibitors, PF-06447475 and MLi-2, blocks G2019S-LRRK2 effects, suggesting that the G2019S-LRRK2 potentiation of inclusion formation depends on its kinase activity. Overexpression of G2019S-LRRK2 slightly increases, whereas WT-LRRK2 decreases, total levels of α-synuclein. Knockdown of total α-synuclein with potent antisense oligonucleotides substantially reduces inclusion formation in G2019S-LRRK2-expressing neurons, suggesting that LRRK2 influences α-synuclein inclusion formation by altering α-synuclein levels. These findings support the hypothesis that G2019S-LRRK2 may increase the progression of pathological α-synuclein inclusions after the initial formation of α-synuclein pathology by increasing a pool of α-synuclein that is more susceptible to forming inclusions. SIGNIFICANCE STATEMENT: α-Synuclein inclusions are found in the brains of patients with many different neurodegenerative diseases. Point mutation, duplication, or triplication of the α-synuclein gene can all cause Parkinson's disease (PD). The G2019S mutation in LRRK2 is the most common known genetic cause of PD. The interaction between G2019S-LRRK2 and α-synuclein may uncover new mechanisms and targets for neuroprotection. Here, we show that expression of G2019S-LRRK2 increases α-synuclein mobility and enhances aggregation of α-synuclein in primary cultured neurons and in dopaminergic neurons of the substantia nigra pars compacta, a susceptible brain region in PD. Potent LRRK2 kinase inhibitors, which are being developed for clinical use, block the increased α-synuclein aggregation in G2019S-LRRK2-expressing neurons. These results demonstrate that α-synuclein inclusion formation in neurons can be blocked and that novel therapeutic compounds targeting this process by inhibiting LRRK2 kinase activity may slow progression of PD-associated pathology.


Asunto(s)
Cuerpos de Inclusión/patología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación/genética , Neuronas/metabolismo , Transcitosis/fisiología , alfa-Sinucleína/metabolismo , Animales , Regulación de la Expresión Génica/genética , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oligorribonucleótidos Antisentido/farmacología , Fotoblanqueo , Ratas , Sinucleínas/metabolismo , Transcitosis/genética , Tubulina (Proteína)/metabolismo , Canales Aniónicos Dependientes del Voltaje/genética , Canales Aniónicos Dependientes del Voltaje/metabolismo
3.
Hum Mol Genet ; 24(5): 1336-49, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25343991

RESUMEN

Mutations in leucine-rich repeat kinase 2 (Lrrk2) are the most common genetic cause of Parkinson's disease (PD), a neurodegenerative disorder affecting 1-2% of those >65 years old. The neurophysiology of LRRK2 remains largely elusive, although protein loss suggests a role in glutamatergic synapse transmission and overexpression studies show altered dopamine release in aged mice. We show that glutamate transmission is unaltered onto striatal projection neurons (SPNs) of adult LRRK2 knockout mice and that adult animals exhibit no detectable cognitive or motor deficits. Basal synaptic transmission is also unaltered in SPNs of LRRK2 overexpressing mice, but they do exhibit clear alterations to D2-receptor-mediated short-term synaptic plasticity, behavioral hypoactivity and impaired recognition memory. These phenomena are associated with decreased striatal dopamine tone and abnormal dopamine- and cAMP-regulated phosphoprotein 32 kDa signal integration. The data suggest that LRRK2 acts at the nexus of dopamine and glutamate signaling in the adult striatum, where it regulates dopamine levels, presynaptic glutamate release via D2-dependent synaptic plasticity and dopamine-receptor signal transduction.


Asunto(s)
Dopamina/metabolismo , Memoria , Actividad Motora , Neostriado/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Animales , Glutamatos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Masculino , Ratones , Ratones Transgénicos , Plasticidad Neuronal , Neuronas/metabolismo , Enfermedad de Parkinson/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transmisión Sináptica
4.
Hum Mol Genet ; 23(7): 1794-801, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24218364

RESUMEN

A Saskatchewan multi-incident family was clinically characterized with Parkinson disease (PD) and Lewy body pathology. PD segregates as an autosomal-dominant trait, which could not be ascribed to any known mutation. DNA from three affected members was subjected to exome sequencing. Genome alignment, variant annotation and comparative analyses were used to identify shared coding mutations. Sanger sequencing was performed within the extended family and ethnically matched controls. Subsequent genotyping was performed in a multi-ethnic case-control series consisting of 2928 patients and 2676 control subjects from Canada, Norway, Taiwan, Tunisia, and the USA. A novel mutation in receptor-mediated endocytosis 8/RME-8 (DNAJC13 p.Asn855Ser) was found to segregate with disease. Screening of cases and controls identified four additional patients with the mutation, of which two had familial parkinsonism. All carriers shared an ancestral DNAJC13 p.Asn855Ser haplotype and claimed Dutch-German-Russian Mennonite heritage. DNAJC13 regulates the dynamics of clathrin coats on early endosomes. Cellular analysis shows that the mutation confers a toxic gain-of-function and impairs endosomal transport. DNAJC13 immunoreactivity was also noted within Lewy body inclusions. In late-onset disease which is most reminiscent of idiopathic PD subtle deficits in endosomal receptor-sorting/recycling are highlighted by the discovery of pathogenic mutations VPS35, LRRK2 and now DNAJC13. With this latest discovery, and from a neuronal perspective, a temporal and functional ecology is emerging that connects synaptic exo- and endocytosis, vesicular trafficking, endosomal recycling and the endo-lysosomal degradative pathway. Molecular deficits in these processes are genetically linked to the phenotypic spectrum of parkinsonism associated with Lewy body pathology.


Asunto(s)
Cuerpos de Lewy/genética , Chaperonas Moleculares/genética , Mutación/genética , Enfermedad de Parkinson/genética , Adulto , Edad de Inicio , Anciano , Secuencia de Bases , Estudios de Casos y Controles , Células Cultivadas , Endocitosis/genética , Endosomas/genética , Familia , Femenino , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad por Cuerpos de Lewy/genética , Masculino , Persona de Mediana Edad , Chaperonas Moleculares/inmunología , Linaje , Proteínas Serina-Treonina Quinasas/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Proteínas de Transporte Vesicular/genética
5.
Proc Natl Acad Sci U S A ; 110(50): 20296-301, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24277827

RESUMEN

Palmitoylation of neurotransmitter receptors and associated scaffold proteins regulates their membrane association in a rapid, reversible, and activity-dependent fashion. This makes palmitoylation an attractive candidate as a key regulator of the fast, reversible, and activity-dependent insertion of synaptic proteins required during the induction and expression of long-term plasticity. Here we describe that the constitutive loss of huntingtin interacting protein 14 (Hip14, also known as DHHC17), a single member of the broad palmitoyl acyltransferase (PAT) family, produces marked alterations in synaptic function in varied brain regions and significantly impairs hippocampal memory and synaptic plasticity. The data presented suggest that, even though the substrate pool is overlapping for the 23 known PAT family members, the function of a single PAT has marked effects upon physiology and cognition. Moreover, an improved understanding of the role of PATs in synaptic modification and maintenance highlights a potential strategy for intervention against early cognitive impairments in neurodegenerative disease.


Asunto(s)
Aciltransferasas/genética , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Trastornos de la Memoria/genética , Plasticidad Neuronal/genética , Sinapsis/genética , Aciltransferasas/metabolismo , Análisis de Varianza , Animales , Recuento de Células , Dendritas/ultraestructura , Hipocampo/citología , Hipocampo/fisiología , Lipoilación , Ratones , Ratones Noqueados , Plasticidad Neuronal/fisiología , Técnicas de Placa-Clamp , Sinapsis/fisiología
6.
Mol Cell Neurosci ; 60: 43-52, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24662423

RESUMEN

Synaptic competition is widely believed to be central to the formation and function of neuronal networks, yet the underlying mechanisms are poorly described. To investigate synaptic competition in vitro, we have developed a novel two input pathway competition model using a 3-compartment microfluidic device. Axons from cultured rat cortical neurons from two different lateral compartments (inputs) innervate a common neuronal population in a separate central compartment. Inhibiting one input's activity, using the GABAAR agonist muscimol, resulted in increased synapse numbers and axon elongation of the opposing untreated (uninhibited) inputs in the central compartment. Time lapse imaging revealed that uninhibited inputs outgrew and outconnected their inhibited counterparts. This form of competition occurs during a sensitive period ending prior to 21 DIV and is NMDAR and CamKII dependent. Surprisingly, this form of plasticity was dependent on the age of the center compartment neurons but not of the competing inputs.


Asunto(s)
Microfluídica , Modelos Neurológicos , Plasticidad Neuronal , Sinapsis/fisiología , Potenciales de Acción , Animales , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/fisiología , Agonistas de Receptores de GABA-A/farmacología , Muscimol/farmacología , Neurogénesis , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ratas , Potenciales Sinápticos
7.
Neurodegener Dis ; 15(2): 93-108, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25871323

RESUMEN

BACKGROUND: Huntington's disease (HD) is a late-onset fatal neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the gene coding for the protein huntingtin and is characterised by progressive motor, psychiatric and cognitive decline. We previously demonstrated that normal synaptic function in HD could be restored by application of dopamine receptor agonists, suggesting that changes in the release or bioavailability of dopamine may be a contributing factor to the disease process. OBJECTIVE: In the present study, we examined the properties of midbrain dopaminergic neurones and dopamine release in presymptomatic and symptomatic transgenic HD mice. METHODS AND RESULTS: Using intracellular sharp recordings and immunohistochemistry, we found that neuronal excitability was increased due to a loss of slow afterhyperpolarisation and that these changes were related to an apparent functional loss and abnormal distribution of SK3 channels (KCa2.3 encoded by the KCNN3 gene), a class of small-conductance calcium-activated potassium channels. Electrochemical detection of dopamine showed that this observation was associated with an enhanced dopamine release in presymptomatic transgenic mice and a drastic reduction in symptomatic animals. These changes occurred in the context of a progressive expansion in the CAG repeat number and nuclear localisation of mutant protein within the substantia nigra pars compacta. CONCLUSIONS: Dopaminergic neuronal dysfunction is a key early event in HD disease progression. The initial increase in dopamine release appears to be related to a loss of SK3 channel function, a protein containing a polyglutamine tract. Implications for polyglutamine-mediated sequestration of SK3 channels, dopamine-associated DNA damage and CAG expansion are discussed in the context of HD.


Asunto(s)
Encéfalo/patología , Neuronas Dopaminérgicas/fisiología , Enfermedad de Huntington/patología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Animales , Fenómenos Biofísicos/genética , Modelos Animales de Enfermedad , Dopamina/metabolismo , Estimulación Eléctrica , Femenino , Regulación de la Expresión Génica/genética , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Técnicas In Vitro , Masculino , Potenciales de la Membrana/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Expansión de Repetición de Trinucleótido/genética , Tirosina 3-Monooxigenasa/metabolismo
8.
Hum Mol Genet ; 21(17): 3739-52, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22523092

RESUMEN

In Huntington's disease (HD), the mutant huntingtin (mhtt) protein is associated with striatal dysfunction and degeneration. Excitotoxicity and early synaptic defects are attributed, in part, to altered NMDA receptor (NMDAR) trafficking and function. Deleterious extrasynaptic NMDAR localization and signalling are increased early in yeast artificial chromosome mice expressing full-length mhtt with 128 polyglutamine repeats (YAC128 mice). NMDAR trafficking at the plasma membrane is regulated by dephosphorylation of the NMDAR subunit GluN2B tyrosine 1472 (Y1472) residue by STriatal-Enriched protein tyrosine Phosphatase (STEP). NMDAR function is also regulated by calpain cleavage of the GluN2B C-terminus. Activation of both STEP and calpain is calcium-dependent, and disruption of calcium homeostasis occurs early in the HD striatum. Here, we show increased calpain cleavage of GluN2B at both synaptic and extrasynaptic sites, and elevated extrasynaptic total GluN2B expression in the YAC128 striatum. Calpain inhibition significantly reduced extrasynaptic GluN2B expression in the YAC128 but not wild-type striatum. Furthermore, calpain inhibition reduced whole-cell NMDAR current and the surface/internal GluN2B ratio in co-cultured striatal neurons, without affecting synaptic GluN2B localization. Synaptic STEP activity was also significantly higher in the YAC128 striatum, correlating with decreased GluN2B Y1472 phosphorylation. A substrate-trapping STEP protein (TAT-STEP C-S) significantly increased VGLUT1-GluN2B colocalization, as well as increasing synaptic GluN2B expression and Y1472 phosphorylation. Moreover, combined calpain inhibition and STEP inactivation reduced extrasynaptic, while increasing synaptic GluN2B expression in the YAC128 striatum. These results indicate that increased STEP and calpain activation contribute to altered NMDAR localization in an HD mouse model, suggesting new therapeutic targets for HD.


Asunto(s)
Calpaína/metabolismo , Enfermedad de Huntington/enzimología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/enzimología , Animales , Calpaína/antagonistas & inhibidores , Calpaína/genética , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Enfermedad de Huntington/patología , Activación del Canal Iónico/efectos de los fármacos , Ratones , Modelos Biológicos , Neostriado/efectos de los fármacos , Neostriado/enzimología , Neostriado/patología , Neuronas/efectos de los fármacos , Neuronas/enzimología , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Transporte de Proteínas/efectos de los fármacos , Sinapsis/efectos de los fármacos
9.
Am J Hum Genet ; 89(3): 398-406, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-21907011

RESUMEN

Genome-wide analysis of a multi-incident family with autosomal-dominant parkinsonism has implicated a locus on chromosomal region 3q26-q28. Linkage and disease segregation is explained by a missense mutation c.3614G>A (p.Arg1205His) in eukaryotic translation initiation factor 4-gamma (EIF4G1). Subsequent sequence and genotype analysis identified EIF4G1 c.1505C>T (p.Ala502Val), c.2056G>T (p.Gly686Cys), c.3490A>C (p.Ser1164Arg), c.3589C>T (p.Arg1197Trp) and c.3614G>A (p.Arg1205His) substitutions in affected subjects with familial parkinsonism and idiopathic Lewy body disease but not in control subjects. Despite different countries of origin, persons with EIF4G1 c.1505C>T (p.Ala502Val) or c.3614G>A (p.Arg1205His) mutations appear to share haplotypes consistent with ancestral founders. eIF4G1 p.Ala502Val and p.Arg1205His disrupt eIF4E or eIF3e binding, although the wild-type protein does not, and render mutant cells more vulnerable to reactive oxidative species. EIF4G1 mutations implicate mRNA translation initiation in familial parkinsonism and highlight a convergent pathway for monogenic, toxin and perhaps virally-induced Parkinson disease.


Asunto(s)
Cromosomas Humanos Par 3/genética , Factor 4G Eucariótico de Iniciación/genética , Enfermedad de Parkinson/genética , Biosíntesis de Proteínas/genética , Secuencia de Bases , Clonación Molecular , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Citometría de Flujo , Ligamiento Genético , Genotipo , Humanos , Inmunoprecipitación , Mitocondrias/fisiología , Datos de Secuencia Molecular , Mutación Missense/genética , Linaje
10.
Mov Disord ; 29(9): 1201-4, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24676999

RESUMEN

BACKGROUND: Depression, parkinsonism, and hypoventilation (Perry syndrome) or familial motor neuron disease have been linked to mutations in dynactin P150(Glued) (DCTN1). METHODS: We employed genealogic, clinical, neurologic, and MRI investigations, as well as analysis of genes implicated in parkinsonism. Cellular transfection, immunocytochemistry, and immunoprecipitation analysis of wild-type (WT) and mutant DCTN1 were also performed. RESULTS: A novel heterozygous mutation, DCTN1 c.156T>G, encoding p.Phe52Leu, segregates with parkinsonism in a Japanese family. The substitution was not observed in affected probands with familial parkinsonism or control subjects and is evolutionarily conserved. In contrast to Perry syndrome, affected carriers have late-onset disease and slower progression, with frontotemporal atrophy revealed by MRI. In vitro studies suggest the mutant protein has impaired microtubule binding, compared to WT dynactin p150(Glued) . CONCLUSIONS: DCTN1 mutations may contribute to disparate neurodegenerative diagnoses, including familial motor neuron disease, parkinsonism, and frontotemporal atrophy, and further studies of dynactin-mediated cargo transport may prove insightful.


Asunto(s)
Demencia Frontotemporal/genética , Proteínas Asociadas a Microtúbulos/genética , Trastornos Parkinsonianos/genética , Polimorfismo de Nucleótido Simple/genética , Edad de Inicio , Anciano , Atrofia , Citocinas/metabolismo , Complejo Dinactina , Femenino , Pruebas Genéticas , Células HEK293 , Humanos , Masculino , Microtúbulos/patología , Persona de Mediana Edad , Examen Neurológico , Transfección
11.
Sci Rep ; 14(1): 10773, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730262

RESUMEN

The developing brain is vulnerable to maternal bacterial and viral infections which induce strong inflammatory responses in the mother that are mimicked in the offspring brain, resulting in irreversible neurodevelopmental defects, and associated cognitive and behavioural impairments. In contrast, infection during pregnancy and lactation with the immunoregulatory murine intestinal nematode, Heligmosomoides bakeri, upregulates expression of genes associated with long-term potentiation (LTP) of synaptic networks in the brain of neonatal uninfected offspring, and enhances spatial memory in uninfected juvenile offspring. As the hippocampus is involved in spatial navigation and sensitive to immune events during development, here we assessed hippocampal gene expression, LTP, and neuroimmunity in 3-week-old uninfected offspring born to H. bakeri infected mothers. Further, as maternal immunity shapes the developing immune system, we assessed the impact of maternal H. bakeri infection on the ability of offspring to resist direct infection. In response to maternal infection, we found an enhanced propensity to induce LTP at Schaffer collateral synapses, consistent with RNA-seq data indicating accelerated development of glutamatergic synapses in uninfected offspring, relative to those from uninfected mothers. Hippocampal RNA-seq analysis of offspring of infected mothers revealed increased expression of genes associated with neurogenesis, gliogenesis, and myelination. Furthermore, maternal infection improved resistance to direct infection of H. bakeri in offspring, correlated with transfer of parasite-specific IgG1 to their serum. Hippocampal immunohistochemistry and gene expression suggest Th2/Treg biased neuroimmunity in offspring, recapitulating peripheral immunoregulation of H. bakeri infected mothers. These findings indicate maternal H. bakeri infection during pregnancy and lactation alters peripheral and neural immunity in uninfected offspring, in a manner that accelerates neural maturation to promote hippocampal LTP, and upregulates the expression of genes associated with neurogenesis, gliogenesis, and myelination.


Asunto(s)
Hipocampo , Plasticidad Neuronal , Animales , Femenino , Hipocampo/metabolismo , Hipocampo/parasitología , Embarazo , Ratones , Infecciones por Nematodos/inmunología , Infecciones por Nematodos/parasitología , Potenciación a Largo Plazo , Efectos Tardíos de la Exposición Prenatal/inmunología , Infecciones por Strongylida/inmunología , Infecciones por Strongylida/parasitología , Masculino , Neuroinmunomodulación
12.
EBioMedicine ; 104: 105161, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772282

RESUMEN

BACKGROUND: Bipolar disorder (BD) is a multifactorial psychiatric illness affecting ∼1% of the global adult population. Lithium (Li), is the most effective mood stabilizer for BD but works only for a subset of patients and its mechanism of action remains largely elusive. METHODS: In the present study, we used iPSC-derived neurons from patients with BD who are responsive (LR) or not (LNR) to lithium. Combined electrophysiology, calcium imaging, biochemistry, transcriptomics, and phosphoproteomics were employed to provide mechanistic insights into neuronal hyperactivity in BD, investigate Li's mode of action, and identify alternative treatment strategies. FINDINGS: We show a selective rescue of the neuronal hyperactivity phenotype by Li in LR neurons, correlated with changes to Na+ conductance. Whole transcriptome sequencing in BD neurons revealed altered gene expression pathways related to glutamate transmission, alterations in cell signalling and ion transport/channel activity. We found altered Akt signalling as a potential therapeutic effect of Li in LR neurons from patients with BD, and that Akt activation mimics Li effect in LR neurons. Furthermore, the increased neural network activity observed in both LR & LNR neurons from patients with BD were reversed by AMP-activated protein kinase (AMPK) activation. INTERPRETATION: These results suggest potential for new treatment strategies in BD, such as Akt activators in LR cases, and the use of AMPK activators for LNR patients with BD. FUNDING: Supported by funding from ERA PerMed, Bell Brain Canada Mental Research Program and Brain & Behavior Research Foundation.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Trastorno Bipolar , Células Madre Pluripotentes Inducidas , Neuronas , Proteínas Proto-Oncogénicas c-akt , Trastorno Bipolar/metabolismo , Trastorno Bipolar/tratamiento farmacológico , Humanos , Neuronas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Litio/farmacología , Litio/uso terapéutico , Transducción de Señal , Perfilación de la Expresión Génica , Transcriptoma
13.
Res Sq ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38562709

RESUMEN

Background: Variants in the CTSB gene encoding the lysosomal hydrolase cathepsin B (catB) are associated with increased risk of Parkinson's disease (PD). However, neither the specific CTSB variants driving these associations nor the functional pathways that link catB to PD pathogenesis have been characterized. CatB activity contributes to lysosomal protein degradation and regulates signaling processes involved in autophagy and lysosome biogenesis. Previous in vitro studies have found that catB can cleave monomeric and fibrillar alpha-synuclein, a key protein involved in the pathogenesis of PD that accumulates in the brains of PD patients. However, truncated synuclein isoforms generated by catB cleavage have an increased propensity to aggregate. Thus, catB activity could potentially contribute to lysosomal degradation and clearance of pathogenic alpha synuclein from the cell, but also has the potential of enhancing synuclein pathology by generating aggregation-prone truncations. Therefore, the mechanisms linking catB to PD pathophysiology remain to be clarified. Methods: Here, we conducted genetic analyses of the association between common and rare CTSB variants and risk of PD. We then used genetic and pharmacological approaches to manipulate catB expression and function in cell lines and induced pluripotent stem cell-derived dopaminergic neurons and assessed lysosomal activity and the handling of aggregated synuclein fibrils. Results: We first identified specific non-coding variants in CTSB that drive the association with PD and are linked to changes in brain CTSB expression levels. Using iPSC-derived dopaminergic neurons we then find that catB inhibition impairs autophagy, reduces glucocerebrosidase (encoded by GBA1) activity, and leads to an accumulation of lysosomal content. Moreover, in cell lines, reduction of CTSB gene expression impairs the degradation of pre-formed alpha-synuclein fibrils, whereas CTSB gene activation enhances fibril clearance. Similarly, in midbrain organoids and dopaminergic neurons treated with alpha-synuclein fibrils, catB inhibition or knockout potentiates the formation of inclusions which stain positively for phosphorylated alpha-synuclein. Conclusions: The results of our genetic and functional studies indicate that the reduction of catB function negatively impacts lysosomal pathways associated with PD pathogenesis, while conversely catB activation could promote the clearance of pathogenic alpha-synuclein.

14.
J Neurosci ; 32(12): 3992-4003, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22442066

RESUMEN

The NMDAR plays a unique and vital role in subcellular signaling. Calcium influx initiates signaling cascades important for both synaptic plasticity and survival; however, overactivation of the receptor leads to toxicity and cell death. This dichotomy is partially explained by the subcellular location of the receptor. NMDARs located at the synapse stimulate cell survival pathways, while extrasynaptic receptors signal for cell death. Thus far, this interplay between synaptic and extrasynaptic NMDARs has been studied exclusively in cortical (CTX) and hippocampal neurons. It was unknown whether other cell types, such as GABAergic medium-sized spiny projection neurons of the striatum (MSNs), which bear the brunt of neurodegeneration in Huntington's disease, follow the same pattern. Here we report synaptic versus extrasynaptic NMDAR signaling in striatal MSNs and resultant activation of cAMP response element binding protein (CREB), in rat primary corticostriatal cocultures. Similarly to CTX, we found in striatal MSNs that synaptic NMDARs activate CREB, whereas extrasynaptic NMDARs dominantly oppose CREB activation. However, MSNs are much less susceptible to NMDA-mediated toxicity than CTX cells and show differences in subcellular GluN2B distribution. Blocking NMDARs with memantine (30 µm) or GluN2B-containing receptors with ifenprodil (3 µm) prevents CREB shutoff effectively in CTX and MSNs, and also rescues both neuronal types from NMDA-mediated toxicity. This work may provide cell and NMDAR subtype-specific targets for treatment of diseases with putative NMDAR involvement, including neurodegenerative disorders and ischemia.


Asunto(s)
Corteza Cerebral/citología , Cuerpo Estriado/citología , Neuronas/citología , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/fisiología , Sinapsis/fisiología , 4-Aminopiridina/farmacología , Análisis de Varianza , Animales , Bicuculina/farmacología , Proteína de Unión a CREB/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Células Cultivadas , Técnicas de Cocultivo , Estimulación Eléctrica , Embrión de Mamíferos , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Femenino , Antagonistas de Receptores de GABA-A/farmacología , Glutamato Descarboxilasa/metabolismo , Glicinérgicos/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Técnicas Analíticas Microfluídicas/métodos , N-Metilaspartato/farmacología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Nifedipino/farmacología , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Embarazo , Ratas , Ratas Wistar , Bloqueadores de los Canales de Sodio/farmacología , Estricnina/farmacología , Tetrodotoxina/farmacología , Transfección/métodos , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
15.
Hum Mol Genet ; 20(20): 3899-909, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21775500

RESUMEN

Huntingtin interacting protein 14 (HIP14, ZDHHC17) is a huntingtin (HTT) interacting protein with palmitoyl transferase activity. In order to interrogate the function of Hip14, we generated mice with disruption in their Hip14 gene. Hip14-/- mice displayed behavioral, biochemical and neuropathological defects that are reminiscent of Huntington disease (HD). Palmitoylation of other HIP14 substrates, but not Htt, was reduced in the Hip14-/- mice. Hip14 is dysfunctional in the presence of mutant htt in the YAC128 mouse model of HD, suggesting that altered palmitoylation mediated by HIP14 may contribute to HD.


Asunto(s)
Aciltransferasas/deficiencia , Enfermedad de Huntington/etiología , Lipoilación/genética , Proteínas del Tejido Nervioso/deficiencia , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Muerte Celular/genética , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Encefalinas/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Ratones , Ratones Noqueados , Actividad Motora/genética , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/patología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Sinapsis/metabolismo
16.
NPJ Parkinsons Dis ; 9(1): 167, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110354

RESUMEN

Dysregulation of dopamine neurotransmission profoundly affects motor, motivation and learning behaviors, and can be observed during the prodromal phase of Parkinson's disease (PD). However, the mechanism underlying these pathophysiological changes remains to be elucidated. Mutations in vacuolar protein sorting 35 (VPS35) and leucine-rich repeat kinase 2 (LRRK2) both lead to autosomal dominant PD, and VPS35 and LRRK2 may physically interact to govern the trafficking of synaptic cargos within the endo-lysosomal network in a kinase-dependent manner. To better understand the functional role of VPS35 and LRRK2 on dopamine physiology, we examined Vps35 haploinsufficient (Haplo) and Vps35 p.D620N knock-in (VKI) mice and how their behavior, dopamine kinetics and biochemistry are influenced by LRRK2 kinase inhibitors. We found Vps35 p.D620N significantly elevates LRRK2-mediated phosphorylation of Rab10, Rab12 and Rab29. In contrast, Vps35 haploinsufficiency reduces phosphorylation of Rab12. While striatal dopamine transporter (DAT) expression and function is similarly impaired in both VKI and Haplo mice, that physiology is normalized in VKI by treatment with the LRRK2 kinase inhibitor, MLi-2. As a corollary, VKI animals show a significant increase in amphetamine induced hyperlocomotion, compared to Haplo mice, that is also abolished by MLi-2. Taken together, these data show Vps35 p.D620N confers a gain-of-function with respect to LRRK2 kinase activity, and that VPS35 and LRRK2 functionally interact to regulate DAT function and striatal dopamine transmission.

17.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014143

RESUMEN

Variants in the CTSB gene encoding the lysosomal hydrolase cathepsin B (catB) are associated with increased risk of Parkinson's disease (PD). However, neither the specific CTSB variants driving these associations nor the functional pathways that link catB to PD pathogenesis have been characterized. CatB activity contributes to lysosomal protein degradation and regulates signaling processes involved in autophagy and lysosome biogenesis. Previous in vitro studies have found that catB can cleave monomeric and fibrillar alpha-synuclein, a key protein involved in the pathogenesis of PD that accumulates in the brains of PD patients. However, truncated synuclein isoforms generated by catB cleavage have an increased propensity to aggregate. Thus, catB activity could potentially contribute to lysosomal degradation and clearance of pathogenic alpha synuclein from the cell, but also has the potential of enhancing synuclein pathology by generating aggregation-prone truncations. Therefore, the mechanisms linking catB to PD pathophysiology remain to be clarified. Here, we conducted genetic analyses of the association between common and rare CTSB variants and risk of PD. We then used genetic and pharmacological approaches to manipulate catB expression and function in cell lines and induced pluripotent stem cell-derived dopaminergic neurons and assessed lysosomal activity and the handling of aggregated synuclein fibrils. We find that catB inhibition impairs autophagy, reduces glucocerebrosidase (encoded by GBA1) activity, and leads to an accumulation of lysosomal content. In cell lines, reduction of CTSB gene expression impairs the degradation of pre-formed alpha-synuclein fibrils, whereas CTSB gene activation enhances fibril clearance. In midbrain organoids and dopaminergic neurons treated with alpha-synuclein fibrils, catB inhibition potentiates the formation of inclusions which stain positively for phosphorylated alpha-synuclein. These results indicate that the reduction of catB function negatively impacts lysosomal pathways associated with PD pathogenesis, while conversely catB activation could promote the clearance of pathogenic alpha-synuclein.

18.
J Neurosci ; 31(31): 11126-32, 2011 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-21813674

RESUMEN

Frontotemporal dementia (FTD) has been linked to mutations in the progranulin gene (GRN) that lead to progranulin (PGRN) haploinsufficiency. Thus far, our understanding of the effects of PGRN depletion in the brain has been derived from investigation of gross pathology, and more detailed analyses of cellular function have been lacking. We report that knocking down PGRN levels in rat primary hippocampal cultures reduces neural connectivity by decreasing neuronal arborization and length as well as synapse density. Despite this, the number of synaptic vesicles per synapse and the frequency of mEPSCs are increased in PGRN knockdown cells, suggesting an increase in the probability of release at remaining synapses. Interestingly, we demonstrate that the number of vesicles per synapse is also increased in postmortem brain sections from FTD patients with PGRN haploinsufficiency, relative to controls. Our observations show that PGRN knockdown severely alters neuronal connectivity in vitro and that the synaptic vesicle phenotype observed in culture is consistent with that observed in the hippocampus of FTD patients.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Demencia Frontotemporal/patología , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Neuronas/fisiología , Sinapsis/fisiología , Anciano , Análisis de Varianza , Animales , Células Cultivadas , Dendritas/ultraestructura , Homólogo 4 de la Proteína Discs Large , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/genética , Femenino , Demencia Frontotemporal/genética , Proteínas Fluorescentes Verdes/genética , Guanilato-Quinasas/genética , Hipocampo/citología , Humanos , Etiquetado Corte-Fin in Situ/métodos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas Luminiscentes/genética , Masculino , Proteínas de la Membrana/genética , Microscopía Electrónica de Transmisión , Mutación , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Receptores AMPA/metabolismo , Sinapsis/genética , Sinapsis/ultraestructura , Vesículas Sinápticas/genética , Vesículas Sinápticas/fisiología , Vesículas Sinápticas/ultraestructura , Sinaptofisina/metabolismo , Sales de Tetrazolio , Tiazoles , Transfección/métodos
19.
Neurobiol Dis ; 45(3): 999-1009, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22198502

RESUMEN

Huntington disease (HD) is a dominantly inherited neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the protein huntingtin (htt). Previous studies have shown enhanced N-methyl-d-aspartate (NMDA)-induced excitotoxicity in neuronal models of HD, mediated in part by increased NMDA receptor (NMDAR) GluN2B subunit binding with the postsynaptic density protein-95 (PSD-95). In cultured hippocampal neurons, the NMDAR-activated p38 Mitogen-activated Protein Kinase (MAPK) death pathway is disrupted by a peptide (Tat-NR2B9c) that uncouples GluN2B from PSD-95, whereas NMDAR-mediated activation of c-Jun N-terminal Kinase (JNK) MAPK is PSD-95-independent. To investigate the mechanism by which Tat-NR2B9c protects striatal medium spiny neurons (MSNs) from mutant htt (mhtt)-enhanced NMDAR toxicity, we compared striatal tissue and cultured MSNs from presymptomatic yeast artificial chromosome (YAC) mice expressing htt with 128 polyQ (YAC128) to those from YAC18 and/or WT mice as controls. Similar to the previously published shift of GluN2B-containing NMDARs to extrasynaptic sites, we found increased PSD-95 localization as well as elevated PSD-95-GluN2B interactions in the striatal non-PSD (extrasynaptic) fraction from YAC128 mice. Notably, basal levels of both activated p38 and JNK MAPKs were elevated in the YAC128 striatum. NMDA stimulation of acute slices increased activation of p38 and JNK in WT and YAC128 striatum, but Tat-NR2B9c pretreatment reduced only the p38 activation in YAC128. In cultured MSNs, p38 MAPK inhibition reduced YAC128 NMDAR-mediated cell death to WT levels, and occluded the Tat-NR2B9c peptide protective effect; in contrast, inhibition of JNK had a similar protective effect in cultured MSNs from both WT and YAC128 mice. Our results suggest that altered activation of p38 MAPK contributes to mhtt enhancement of GluN2B/PSD-95 toxic signaling.


Asunto(s)
Cuerpo Estriado/patología , Enfermedad de Huntington/patología , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas Bacterianas/genética , Corteza Cerebral/citología , Cromosomas Artificiales de Levadura/genética , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Guanilato-Quinasas/metabolismo , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Inmunoprecipitación/métodos , Etiquetado Corte-Fin in Situ , Proteínas Luminiscentes/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , N-Metilaspartato/farmacología , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Proteínas Nucleares/genética , Péptidos/genética , Péptidos/farmacología , Receptores de N-Metil-D-Aspartato/química , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
20.
Neurobiol Dis ; 48(1): 40-51, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22668780

RESUMEN

We recently reported evidence for disturbed synaptic versus extrasynaptic NMDAR transmission in the early pathogenesis of Huntington's disease (HD), a late-onset neurodegenerative disorder caused by CAG repeat expansion in the gene encoding huntingtin. Studies in glutamatergic cells indicate that synaptic NMDAR transmission increases phosphorylated cyclic-AMP response element binding protein (pCREB) levels and drives neuroprotective gene transcription, whereas extrasynaptic NMDAR activation reduces pCREB and promotes cell death. By generating striatal and cortical neuronal co-cultures to investigate the glutamatergic innervation of striatal neurons, we demonstrate that dichotomous synaptic and extrasynaptic NMDAR signaling also occurs in GABAergic striatal medium-sized spiny neurons (MSNs), which are acutely vulnerable in HD. Further, we show that wild-type (WT) and HD transgenic YAC128 MSNs co-cultured with cortical cells have similar levels of glutamatergic synapses, synaptic NMDAR currents and synaptic GluN2B and GluN2A subunit-containing NMDARs. However, NMDAR whole-cell, and especially extrasynaptic, current is elevated in YAC128 MSNs. Moreover, GluN2B subunit-containing NMDAR surface expression is markedly increased, irrespective of whether or not the co-cultured cortical cells express mutant huntingtin. The data suggest that MSN cell-autonomous increases in extrasynaptic NMDARs are driven by the HD mutation. Consistent with these results, we find that extrasynaptic NMDAR-induced pCREB reductions and apoptosis are also augmented in YAC128 MSNs. Moreover, both NMDAR-mediated apoptosis and CREB-off signaling are blocked by co-application of either memantine or the GluN2B subunit-selective antagonist ifenprodil in YAC128 MSNs. GluN2A-subunit-selective concentrations of the antagonist NVP-AAM077 did not reduce cell death in either genotype. Cortico-striatal co-cultures provide an in vitro model system in which to better investigate striatal neuronal dysfunction in disease than mono-cultured striatal cells. Results from the use of this system, which partially recapitulates the cortico-striatal circuit and is amenable to acute genetic and pharmacological manipulations, suggest that pathophysiological NMDAR signaling is an intrinsic frailty in HD MSNs that can be successfully targeted by pharmacological interventions.


Asunto(s)
Apoptosis/fisiología , Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Enfermedad de Huntington/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/fisiología , Animales , Apoptosis/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Técnicas de Cocultivo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/farmacología , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Memantina/farmacología , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Piperidinas/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA