Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(4): 712-728.e14, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35063084

RESUMEN

Tau (MAPT) drives neuronal dysfunction in Alzheimer disease (AD) and other tauopathies. To dissect the underlying mechanisms, we combined an engineered ascorbic acid peroxidase (APEX) approach with quantitative affinity purification mass spectrometry (AP-MS) followed by proximity ligation assay (PLA) to characterize Tau interactomes modified by neuronal activity and mutations that cause frontotemporal dementia (FTD) in human induced pluripotent stem cell (iPSC)-derived neurons. We established interactions of Tau with presynaptic vesicle proteins during activity-dependent Tau secretion and mapped the Tau-binding sites to the cytosolic domains of integral synaptic vesicle proteins. We showed that FTD mutations impair bioenergetics and markedly diminished Tau's interaction with mitochondria proteins, which were downregulated in AD brains of multiple cohorts and correlated with disease severity. These multimodal and dynamic Tau interactomes with exquisite spatial resolution shed light on Tau's role in neuronal function and disease and highlight potential therapeutic targets to block Tau-mediated pathogenesis.


Asunto(s)
Mitocondrias/metabolismo , Degeneración Nerviosa/metabolismo , Mapas de Interacción de Proteínas , Sinapsis/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Aminoácidos/metabolismo , Biotinilación , Encéfalo/metabolismo , Encéfalo/patología , Núcleo Celular/metabolismo , Progresión de la Enfermedad , Metabolismo Energético , Demencia Frontotemporal/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Mutantes/metabolismo , Mutación/genética , Degeneración Nerviosa/patología , Neuronas/metabolismo , Unión Proteica , Dominios Proteicos , Proteómica , Índice de Severidad de la Enfermedad , Fracciones Subcelulares/metabolismo , Tauopatías/genética , Proteínas tau/química
2.
J Biol Chem ; 299(2): 102858, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36596359

RESUMEN

Regeneration of missing body parts is an incredible ability which is present in a wide number of species. However, this regenerative capability varies among different organisms. Urodeles (salamanders) are able to completely regenerate limbs after amputation through the essential process of blastema formation. The blastema is a collection of relatively undifferentiated progenitor cells that proliferate and repattern to form the internal tissues of a regenerated limb. Understanding blastema formation in salamanders may enable comparative studies with other animals, including mammals, with more limited regenerative abilities and may inspire future therapeutic approaches in humans. This review focuses on the current state of knowledge about how limb blastemas form in salamanders, highlighting both the possible roles of epigenetic controls in this process as well as limitations to scientific understanding that present opportunities for research.


Asunto(s)
Epigénesis Genética , Extremidades , Regeneración , Animales , Humanos , Amputación Quirúrgica , Extremidades/fisiología , Extremidades/cirugía , Regeneración/genética
3.
J Neurosci ; 38(15): 3680-3688, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29540553

RESUMEN

Hyperacetylation of tau has been implicated in neurodegeneration and cognitive decline in tauopathy brains. The nicotinamide adenosine dinucleotide-dependent class-III protein deacetylase SIRT1 is one of the major enzymes involved in removal of acetyl groups from tau in vitro However, whether SIRT1 regulates acetylation of pathogenic tau and ameliorates tau-mediated pathogenesis remains unclear. Here, we report deacetylating activity of SIRT1 for acetylated Lys174 (K174) of tau in tauP301S transgenic mice with a brain-specific SIRT1 deletion. We show that SIRT1 deficiency leads to exacerbation of premature mortality, synapse loss, and behavioral disinhibition in tauP301S transgenic mice of both sexes. By contrast, SIRT1 overexpression by stereotaxic delivery of adeno-associated virus that encodes SIRT1 into the hippocampus reduces acetylated K174 tau. Furthermore, SIRT1 overexpression significantly attenuates the spread of tau pathology into anatomically connected brain regions of tauP301S transgenic mice of both sexes. These findings suggest the functional importance of SIRT1 in regulating pathogenic tau acetylation and in suppressing the spread of tau pathology in vivoSIGNIFICANCE STATEMENT In neurodegenerative disorders with inclusions of microtubule-associated protein tau, aberrant lysine acetylation of tau plays critical roles in promoting tau accumulation and toxicity. Identifying strategies to deacetylate tau could interfere with disease progression; however, little is known about how pathogenic tau is deacetylated in vivo Here we show that the protein deacetylase SIRT1 reduces tau acetylation in a mouse model of neurodegeneration. SIRT1 deficiency in the brain aggravates synapse loss and behavioral disinhibition, and SIRT1 overexpression ameliorates propagation of tau pathology.


Asunto(s)
Sirtuina 1/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Acetilación , Animales , Femenino , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Masculino , Aprendizaje por Laberinto , Ratones , Sirtuina 1/genética , Transmisión Sináptica , Tauopatías/patología , Tauopatías/fisiopatología
4.
J Biol Chem ; 292(47): 19209-19225, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-28972160

RESUMEN

The ubiquitin-proteasome system (UPS) is responsible for most selective protein degradation in eukaryotes and regulates numerous cellular processes, including cell cycle control and protein quality control. A component of this system, the deubiquitinating enzyme USP14, associates with the proteasome where it can rescue substrates from degradation by removal of the ubiquitin tag. We previously found that a small-molecule inhibitor of USP14, known as IU1, can increase the rate of degradation of a subset of proteasome substrates. We report here the synthesis and characterization of 87 variants of IU1, which resulted in the identification of a 10-fold more potent USP14 inhibitor that retains specificity for USP14. The capacity of this compound, IU1-47, to enhance protein degradation in cells was tested using as a reporter the microtubule-associated protein tau, which has been implicated in many neurodegenerative diseases. Using primary neuronal cultures, IU1-47 was found to accelerate the rate of degradation of wild-type tau, the pathological tau mutants P301L and P301S, and the A152T tau variant. We also report that a specific residue in tau, lysine 174, is critical for the IU1-47-mediated tau degradation by the proteasome. Finally, we show that IU1-47 stimulates autophagic flux in primary neurons. In summary, these findings provide a powerful research tool for investigating the complex biology of USP14.


Asunto(s)
Embrión de Mamíferos/metabolismo , Inhibidores Enzimáticos/farmacología , Fibroblastos/metabolismo , Neuronas/metabolismo , Pirroles/farmacología , Ubiquitina Tiolesterasa/fisiología , Proteínas tau/metabolismo , Animales , Células Cultivadas , Citoplasma/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Neuronas/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Pirroles/síntesis química , Ratas Sprague-Dawley , Ubiquitina/metabolismo , Ubiquitinación
5.
BMC Genomics ; 17(1): 923, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27852218

RESUMEN

BACKGROUND: Mouse models have served a valuable role in deciphering various facets of Salivary Gland (SG) biology, from normal developmental programs to diseased states. To facilitate such studies, gene expression profiling maps have been generated for various stages of SG organogenesis. However these prior studies fall short of capturing the transcriptional complexity due to the limited scope of gene-centric microarray-based technology. Compared to microarray, RNA-sequencing (RNA-seq) offers unbiased detection of novel transcripts, broader dynamic range and high specificity and sensitivity for detection of genes, transcripts, and differential gene expression. Although RNA-seq data, particularly under the auspices of the ENCODE project, have covered a large number of biological specimens, studies on the SG have been lacking. RESULTS: To better appreciate the wide spectrum of gene expression profiles, we isolated RNA from mouse submandibular salivary glands at different embryonic and adult stages. In parallel, we processed RNA-seq data for 24 organs and tissues obtained from the mouse ENCODE consortium and calculated the average gene expression values. To identify molecular players and pathways likely to be relevant for SG biology, we performed functional gene enrichment analysis, network construction and hierarchal clustering of the RNA-seq datasets obtained from different stages of SG development and maturation, and other mouse organs and tissues. Our bioinformatics-based data analysis not only reaffirmed known modulators of SG morphogenesis but revealed novel transcription factors and signaling pathways unique to mouse SG biology and function. Finally we demonstrated that the unique SG gene signature obtained from our mouse studies is also well conserved and can demarcate features of the human SG transcriptome that is different from other tissues. CONCLUSIONS: Our RNA-seq based Atlas has revealed a high-resolution cartographic view of the dynamic transcriptomic landscape of the mouse SG at various stages. These RNA-seq datasets will complement pre-existing microarray based datasets, including the Salivary Gland Molecular Anatomy Project by offering a broader systems-biology based perspective rather than the classical gene-centric view. Ultimately such resources will be valuable in providing a useful toolkit to better understand how the diverse cell population of the SG are organized and controlled during development and differentiation.


Asunto(s)
ARN/metabolismo , Glándulas Salivales/metabolismo , Transcriptoma , Animales , Análisis por Conglomerados , Biología Computacional , Bases de Datos Genéticas , Desarrollo Embrionario/genética , Redes Reguladoras de Genes , Humanos , Ratones , Ratones Endogámicos C57BL , Análisis de Componente Principal , ARN/aislamiento & purificación , Glándulas Salivales/crecimiento & desarrollo , Análisis de Secuencia de ARN
6.
J Neurosci ; 33(42): 16698-714, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24133272

RESUMEN

Synaptic vesicles undergo sequential steps in preparation for neurotransmitter release. Individual SNARE proteins and the SNARE complex itself have been implicated in these processes. However, discrete effects of SNARE proteins on synaptic function have been difficult to assess using complete loss-of-function approaches. We therefore used a genetic titration technique in cultured mouse hippocampal neurons to evaluate the contribution of the neuronal SNARE protein Syntaxin1 (Stx1) in vesicle docking, priming, and release probability. We generated graded reductions of total Stx1 levels by combining two approaches, namely, endogenous hypomorphic expression of the isoform Stx1B and RNAi-mediated knockdown. Proximity of synaptic vesicles to the active zone was not strongly affected. However, overall release efficiency of affected neurons was severely impaired, as demonstrated by a smaller readily releasable pool size, slower refilling rate of primed vesicles, and lower release probability. Interestingly, dose-response fitting of Stx1 levels against readily releasable pool size and vesicular release probability showed similar Kd (dissociation constant) values at 18% and 19% of wild-type Stx1, with cooperativity estimates of 3.4 and 2.5, respectively. This strongly suggests that priming and vesicle fusion share the same molecular stoichiometry, and are governed by highly related mechanisms.


Asunto(s)
Exocitosis/fisiología , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Sintaxina 1/metabolismo , Animales , Línea Celular , Hipocampo/citología , Hipocampo/metabolismo , Fusión de Membrana/fisiología , Ratones , Neuronas/citología , Neuronas/metabolismo , Vesículas Sinápticas/genética , Sintaxina 1/genética
7.
PLoS One ; 19(5): e0301082, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722977

RESUMEN

Branching morphogenesis is a complex process shared by many organs including the lungs, kidney, prostate, as well as several exocrine organs including the salivary, mammary and lacrimal glands. This critical developmental program ensures the expansion of an organ's surface area thereby maximizing processes of cellular secretion or absorption. It is guided by reciprocal signaling from the epithelial and mesenchymal cells. While signaling pathways driving salivary gland branching morphogenesis have been relatively well-studied, our understanding of the underlying transcriptional regulatory mechanisms directing this program, is limited. Here, we performed in vivo and ex vivo studies of the embryonic mouse submandibular gland to determine the function of the transcription factor ΔNp63, in directing branching morphogenesis. Our studies show that loss of ΔNp63 results in alterations in the differentiation program of the ductal cells which is accompanied by a dramatic reduction in branching morphogenesis that is mediated by dysregulation of WNT signaling. We show that ΔNp63 modulates WNT signaling to promote branching morphogenesis by directly regulating Sfrp1 expression. Collectively, our findings have revealed a novel role for ΔNp63 in the regulation of this critical process and offers a better understanding of the transcriptional networks involved in branching morphogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana , Glándulas Salivales , Animales , Ratones , Diferenciación Celular , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Morfogénesis , Glándulas Salivales/metabolismo , Glándulas Salivales/embriología , Glándula Submandibular/metabolismo , Glándula Submandibular/embriología , Transactivadores/metabolismo , Transactivadores/genética , Vía de Señalización Wnt
8.
J Chromatogr A ; 1711: 464454, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37871502

RESUMEN

Phthalates are mainly used as plasticizers in polyvinyl chloride (PVC). However, prolonged exposure to phthalates poses considerable risks to human health. Consequently, the utilization of phthalates in consumer products is subject to regulations, with a defined threshold of 0.1 %. In this study, we developed an accurate and simultaneous method for determination of 11 representative phthalates and a non-phthalate plasticizer (di(2-ethylhexyl) terephthalate, DEHT) in PVC as a higher-order reference method. Homogeneously prepared PVC samples, each containing approximately 0.1 % of the target plasticizer compounds, were analyzed using gas chromatography-mass spectrometry (GC-MS) with deuterium-labeled phthalates and DEHT. The developed method could effectively separate and quantify all target plasticizers without interference with each other and potential overlap between the isomeric forms of phthalates, di-isodecyl phthalate, and di-isononyl phthalate. The developed method has high-order metrological quality, exhibiting exceptional selectivity, accuracy, repeatability (≤ 2.17 %), reproducibility (≤ 2.16 %), and relative expanded uncertainty (≤ 5.6 %). This analytical method is thus suitable for accurately assessing the target plasticizer levels in PVC products for ensuring compliance with the established 0.1 % threshold. This method was successfully applied to quantify twelve distinct plasticizers in PVC products obtained from the Korean market, validating its effectiveness and reliability in real-world scenarios.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Humanos , Plastificantes/análisis , Cloruro de Polivinilo/química , Reproducibilidad de los Resultados , Ácidos Ftálicos/análisis , Espectrometría de Masas , Cromatografía de Gases y Espectrometría de Masas/métodos , Isótopos , Dietilhexil Ftalato/análisis
9.
Proteomics ; 12(22): 3304-14, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22997150

RESUMEN

Protein arginine methylation is a PTM catalyzed by an evolutionarily conserved family of enzymes called protein arginine methyltransferases (PRMTs), with PRMT1 being the most conserved member of this enzyme family. This modification has emerged to be an important regulator of protein functions. To better understand the role of PRMTs in cellular pathways and functions, we have carried out a proteomic profiling experiment to comprehensively identify the physical interactors of Hmt1, the budding yeast homolog for human PRMT1. Using a dual-enzymatic digestion linear trap quadrupole/Orbitrap proteomic strategy, we identified a total of 108 proteins that specifically copurify with Hmt1 by tandem affinity purification. A reverse coimmunoprecipitation experiment was used to confirm Hmt1's physical association with Bre5, Mtr4, Snf2, Sum1, and Ssd1, five proteins that were identified as Hmt1-specific interactors in multiple biological replicates. To determine whether the identified Hmt1-interactors had the potential to act as an Hmt1 substrate, we used published bioinformatics algorithms that predict the presence and location of potential methylarginines for each identified interactor. One of the top hits from this analysis, Snf2, was experimentally confirmed as a robust substrate of Hmt1 in vitro. Overall, our data provide a feasible proteomic approach that aid in the better understanding of PRMT1's roles within a cell.


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Arginina/química , Arginina/metabolismo , Simulación por Computador , Metilación , Datos de Secuencia Molecular , Proteína-Arginina N-Metiltransferasas/química , Proteoma/análisis , Proteoma/química , Proteínas Represoras/química , Proteínas de Saccharomyces cerevisiae/química , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/metabolismo
10.
Front Immunol ; 12: 729040, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912329

RESUMEN

Sjögren's Syndrome (SS) is a chronic autoimmune disease of unknown etiology which primarily affects the salivary and lacrimal glands resulting in the loss of secretory function. Treatment options for SS have been hampered due to the lack of a better understanding of the underlying gene regulatory circuitry and the interplay between the myriad pathological cellular states that contribute to salivary gland dysfunction. To better elucidate the molecular nature of SS, we have performed RNA-sequencing analysis of the submandibular glands (SMG) of a well-established primary Sjögren's Syndrome (pSS) mouse model. Our comprehensive examination of global gene expression and comparative analyses with additional SS mouse models and human datasets, have identified a number of important pathways and regulatory networks that are relevant in SS pathobiology. To complement these studies, we have performed single-cell RNA sequencing to examine and identify the molecular and cellular heterogeneity of the diseased cell populations of the mouse SMG. Interrogation of the single-cell transcriptomes has shed light on the diversity of immune cells that are dysregulated in SS and importantly, revealed an activated state of the salivary gland epithelial cells that contribute to the global immune mediated responses. Overall, our broad studies have not only revealed key pathways, mediators and new biomarkers, but have also uncovered the complex nature of the cellular populations in the SMG that are likely to drive the progression of SS. These newly discovered insights into the underlying molecular mechanisms and cellular states of SS will better inform targeted therapeutic discoveries.


Asunto(s)
Síndrome de Sjögren/inmunología , Glándula Submandibular/inmunología , Glándula Submandibular/patología , Transcriptoma , Animales , Células Epiteliales/inmunología , Células Epiteliales/patología , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Ratones , Análisis de la Célula Individual , Síndrome de Sjögren/genética , Síndrome de Sjögren/patología
11.
Sci Rep ; 11(1): 6079, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33727605

RESUMEN

Mutations in the GBA1 gene encoding glucocerebrosidase (GCase) are linked to Gaucher (GD) and Parkinson's Disease (PD). Since some GD and PD patients develop ocular phenotypes, we determined whether ocular phenotypes might result from impaired GCase activity and the corresponding accumulation of glucosylceramide (GluCer) and glucosylsphingosine (GluSph) in the Gba1D409V/D409V knock-in (Gba KI/KI; "KI") mouse. Gba KI mice developed age-dependent pupil dilation deficits to an anti-muscarinic agent; histologically, the iris covered the anterior part of the lens with adhesions between the iris and the anterior surface of the lens (posterior synechia). This may prevent pupil dilation in general, beyond an un-responsiveness of the iris to anti-muscarinics. Gba KI mice displayed atrophy and pigment dispersion of the iris, and occlusion of the iridocorneal angle by pigment-laden cells, reminiscent of secondary open angle glaucoma. Gba KI mice showed progressive thinning of the retina consistent with retinal degeneration. GluSph levels were increased in the anterior and posterior segments of the eye, suggesting that accumulation of lipids in the eye may contribute to degeneration in this compartment. We conclude that the Gba KI model provides robust and reproducible eye phenotypes which may be used to test for efficacy and establish biomarkers for GBA1-related therapies.


Asunto(s)
Enfermedad de Gaucher , Glaucoma de Ángulo Abierto , Glucosilceramidasa , Mutación Missense , Enfermedad de Parkinson , Sustitución de Aminoácidos , Animales , Modelos Animales de Enfermedad , Enfermedad de Gaucher/enzimología , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/patología , Técnicas de Sustitución del Gen , Glaucoma de Ángulo Abierto/enzimología , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/patología , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Humanos , Ratones , Ratones Transgénicos , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología
12.
iScience ; 23(9): 101524, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32932139

RESUMEN

Multipotent ΔNp63-positive cells maintain all epithelial cell lineages of the embryonic and adult salivary gland (SG). However, the molecular mechanisms by which ΔNp63 regulates stem/progenitor (SP) cell populations in the SG remains elusive. To understand the role of ΔNp63 in directing cell fate choices in this gland, we have generated ΔNp63-deleted adult mice and primary salivary cell cultures to probe alterations in SP cell differentiation and function. In parallel, we have leveraged RNA-seq and ChIP-seq-based characterization of the ΔNp63-driven cistrome and scRNA-seq analysis to molecularly interrogate altered SG cellular identities and differentiation states dependent on ΔNp63. Our studies reveal that ablation of ΔNp63 results in a loss of the SP cell population and skewed differentiation that is mediated by Follistatin-dependent dysregulated TGF-ß/Activin signaling. These findings offer new revelations into the SP cell gene regulatory networks that are likely to be relevant for normal or diseased SG states.

13.
Front Immunol ; 11: 606268, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488608

RESUMEN

Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease characterized primarily by immune-mediated destruction of exocrine tissues, such as those of the salivary and lacrimal glands, resulting in the loss of saliva and tear production, respectively. This disease predominantly affects middle-aged women, often in an insidious manner with the accumulation of subtle changes in glandular function occurring over many years. Patients commonly suffer from pSS symptoms for years before receiving a diagnosis. Currently, there is no effective cure for pSS and treatment options and targeted therapy approaches are limited due to a lack of our overall understanding of the disease etiology and its underlying pathology. To better elucidate the underlying molecular nature of this disease, we have performed RNA-sequencing to generate a comprehensive global gene expression profile of minor salivary glands from an ethnically diverse cohort of patients with pSS. Gene expression analysis has identified a number of pathways and networks that are relevant in pSS pathogenesis. Moreover, our detailed integrative analysis has revealed a primary Sjögren's syndrome molecular signature that may represent important players acting as potential drivers of this disease. Finally, we have established that the global transcriptomic changes in pSS are likely to be attributed not only to various immune cell types within the salivary gland but also epithelial cells which are likely playing a contributing role. Overall, our comprehensive studies provide a database-enriched framework and resource for the identification and examination of key pathways, mediators, and new biomarkers important in the pathogenesis of this disease with the long-term goals of facilitating earlier diagnosis of pSS and to mitigate or abrogate the progression of this debilitating disease.


Asunto(s)
Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Glándulas Salivales Menores/metabolismo , Síndrome de Sjögren/genética , Transcriptoma , Estudios de Casos y Controles , Biología Computacional , Células Epiteliales/inmunología , Femenino , Humanos , Persona de Mediana Edad , Glándulas Salivales Menores/inmunología , Síndrome de Sjögren/diagnóstico , Síndrome de Sjögren/inmunología
14.
Dev Cell ; 2(3): 295-305, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11879635

RESUMEN

Sec1/munc18-like proteins (SM proteins) and SNARE complexes are probably universally required for membrane fusion. However, the molecular mechanism by which they interact has only been defined for synaptic vesicle fusion where munc18 binds to syntaxin in a closed conformation that is incompatible with SNARE complex assembly. We now show that Sly1, an SM protein involved in Golgi and ER fusion, binds to a short, evolutionarily conserved N-terminal peptide of Sed5p and Ufe1p in yeast and of syntaxins 5 and 18 in vertebrates. In these syntaxins, the Sly1 binding peptide is upstream of a separate, autonomously folded N-terminal domain. These data suggest a potentially general mechanism by which SM proteins could interact with peptides in target proteins independent of core complex assembly and suggest that munc18 binding to syntaxin is an exception.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , Secuencia Conservada , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Evolución Molecular , Aparato de Golgi/química , Aparato de Golgi/metabolismo , Datos de Secuencia Molecular , Proteínas Munc18 , Proteínas del Tejido Nervioso/metabolismo , Estructura Terciaria de Proteína , Proteínas Qa-SNARE , Saccharomyces cerevisiae , Técnicas del Sistema de Dos Híbridos , Células Vero
15.
PLoS One ; 13(2): e0192775, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29462154

RESUMEN

A better understanding of the normal and diseased biology of salivary glands (SG) has been hampered, in part, due to difficulties in cultivating and maintaining salivary epithelial cells. Towards this end, we have generated a mouse salivary gland epithelial cell (mSGc) culture system that is well-suited for the molecular characterization of SG cells and their differentiation program. We demonstrate that mSGc can be maintained for multiple passages without a loss of proliferation potential, readily form 3D-spheroids and importantly express a panel of well-established salivary gland epithelial cell markers. Moreover, mSGc 3D-spheroids also exhibit functional maturation as evident by robust agonist-induced intracellular calcium signaling. Finally, transcriptomic characterization of mSGc by RNA-seq and hierarchical clustering analysis with adult organ RNA-seq datasets reveal that mSGc retain most of the molecular attributes of adult mouse salivary gland. This well-characterized mouse salivary gland cell line will fill a critical void in the field by offering a valuable resource to examine various mechanistic aspects of mouse salivary gland biology.


Asunto(s)
Genoma , Glándula Submandibular/metabolismo , Animales , Línea Celular Transformada , Células Epiteliales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Glándula Submandibular/citología , Transcriptoma
16.
Sci Rep ; 8(1): 14043, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30232460

RESUMEN

Stem and progenitor cells of the submandibular salivary gland (SMG) give rise to, maintain, and regenerate the multiple lineages of mature epithelial cells including those belonging to the ductal, acinar, basal and myoepithelial subtypes. Here we have exploited single cell RNA-sequencing and in vivo genetic lineage tracing technologies to generate a detailed map of the cell fate trajectories and branch points of the basal and myoepithelial cell populations of the mouse SMG during embryonic development and in adults. Our studies show that the transcription factor p63 and alpha-smooth muscle actin (SMA) serve as faithful markers of the basal and myoepithelial cell lineages, respectively and that both cell types are endowed with progenitor cell properties. However, p63+ basal and SMA+ myoepithelial cells exhibit distinct cell fates by virtue of maintaining different cellular lineages during morphogenesis and in adults. Collectively, our results reveal the dynamic and complex nature of the diverse SMG cell populations and highlight the distinct differentiation potential of the p63 and SMA expressing subtypes in the stem and progenitor cell hierarchy. Long term these findings have profound implications towards a better understanding of the molecular mechanisms that dictate lineage commitment and differentiation programs during development and adult gland maintenance.


Asunto(s)
Actinas/genética , Perfilación de la Expresión Génica/métodos , Fosfoproteínas/genética , Análisis de la Célula Individual/métodos , Glándula Submandibular/crecimiento & desarrollo , Transactivadores/genética , Animales , Diferenciación Celular , Linaje de la Célula , Células Epiteliales/química , Células Epiteliales/citología , Femenino , Técnica del Anticuerpo Fluorescente , Masculino , Ratones , Morfogénesis , Análisis de Secuencia de ARN/métodos , Células Madre/química , Células Madre/citología , Glándula Submandibular/química , Glándula Submandibular/citología
18.
Alzheimers Dement (N Y) ; 3(4): 507-512, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29124108

RESUMEN

INTRODUCTION: Frontotemporal lobar degeneration-causing mutations in the progranulin (GRN) gene reduce progranulin protein (PGRN) levels, suggesting that restoring PGRN in mutation carriers may be therapeutic. Nimodipine, a Food and Drug Administration-approved blood-brain barrier-penetrant calcium channel blocker, increased PGRN levels in PGRN-deficient murine models. We sought to assess safety and tolerability of oral nimodipine in human GRN mutation carriers. METHODS: We performed an open-label, 8-week, dose-finding, phase 1 clinical trial in eight GRN mutation carriers to assess the safety and tolerability of nimodipine and assayed fluid and radiologic markers to investigate therapeutic endpoints. RESULTS: There were no serious adverse events; however, PGRN concentrations (cerebrospinal fluid and plasma) did not change significantly following treatment (percent changes of -5.2 ± 10.9% in plasma and -10.2 ± 7.8% in cerebrospinal fluid). Measurable atrophy within the left middle frontal gyrus was observed over an 8-week period. DISCUSSION: While well tolerated, nimodipine treatment did not alter PGRN concentrations or secondary outcomes.

19.
Neuron ; 90(2): 245-60, 2016 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-27041503

RESUMEN

Tau toxicity has been implicated in the emergence of synaptic dysfunction in Alzheimer's disease (AD), but the mechanism by which tau alters synapse physiology and leads to cognitive decline is unclear. Here we report abnormal acetylation of K274 and K281 on tau, identified in AD brains, promotes memory loss and disrupts synaptic plasticity by reducing postsynaptic KIdney/BRAin (KIBRA) protein, a memory-associated protein. Transgenic mice expressing human tau with lysine-to-glutamine mutations to mimic K274 and K281 acetylation (tauKQ) exhibit AD-related memory deficits and impaired hippocampal long-term potentiation (LTP). TauKQ reduces synaptic KIBRA levels and disrupts activity-induced postsynaptic actin remodeling and AMPA receptor insertion. The LTP deficit was rescued by promoting actin polymerization or by KIBRA expression. In AD patients with dementia, we found enhanced tau acetylation is linked to loss of KIBRA. These findings suggest a novel mechanism by which pathogenic tau causes synaptic dysfunction and cognitive decline in AD pathogenesis.


Asunto(s)
Actinas/metabolismo , Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Trastornos de la Memoria/fisiopatología , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Transducción de Señal , Proteínas tau/metabolismo , Acetilación , Enfermedad de Alzheimer/metabolismo , Animales , Hipocampo/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Trastornos de la Memoria/genética , Ratones , Ratones Transgénicos , Fosfoproteínas , Cultivo Primario de Células , Proteínas tau/genética
20.
Nat Med ; 21(10): 1154-62, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26390242

RESUMEN

Tauopathies, including frontotemporal dementia (FTD) and Alzheimer's disease (AD), are neurodegenerative diseases in which tau fibrils accumulate. Recent evidence supports soluble tau species as the major toxic species. How soluble tau accumulates and causes neurodegeneration remains unclear. Here we identify tau acetylation at Lys174 (K174) as an early change in AD brains and a critical determinant in tau homeostasis and toxicity in mice. The acetyl-mimicking mutant K174Q slows tau turnover and induces cognitive deficits in vivo. Acetyltransferase p300-induced tau acetylation is inhibited by salsalate and salicylate, which enhance tau turnover and reduce tau levels. In the PS19 transgenic mouse model of FTD, administration of salsalate after disease onset inhibited p300 activity, lowered levels of total tau and tau acetylated at K174, rescued tau-induced memory deficits and prevented hippocampal atrophy. The tau-lowering and protective effects of salsalate were diminished in neurons expressing K174Q tau. Targeting tau acetylation could be a new therapeutic strategy against human tauopathies.


Asunto(s)
Trastornos del Conocimiento/fisiopatología , Enfermedades Neurodegenerativas/fisiopatología , Proteínas tau/fisiología , Acetilación , Animales , Conducta Animal , Humanos , Ratones , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA