Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125954

RESUMEN

In this study, we evaluated the ability of the synthetic amphipathic helical peptide (SAHP), L-37pA, which mediates pathogen recognition and innate immune responses, to treat acute respiratory distress syndrome (ARDS) accompanied by diffuse alveolar damage (DAD) and chronic pulmonary fibrosis (PF). For the modeling of ARDS/DAD, male ICR mice were used. Intrabronchial instillation (IB) of 200 µL of inflammatory agents was performed by an intravenous catheter 20 G into the left lung lobe only, leaving the right lobe unaffected. Intravenous injections (IVs) of L-37pA, dexamethasone (DEX) and physiological saline (saline) were used as therapies for ARDS/DAD. L37pA inhibited the circulating levels of inflammatory cytokines, such as IL-8, TNFα, IL1α, IL4, IL5, IL6, IL9 and IL10, by 75-95%. In all cases, the computed tomography (CT) data indicate that L-37pA reduced lung density faster to -335 ± 23 Hounsfield units (HU) on day 7 than with DEX and saline, to -105 ± 29 HU and -23 ± 11 HU, respectively. The results of functional tests showed that L-37pA treatment 6 h after ARDS/DAD initiation resulted in a more rapid improvement in the physiological respiratory lung by 30-45% functions compared with the comparison drugs. Our data suggest that synthetic amphipathic helical peptide L-37pA blocked a cytokine storm, inhibited acute and chronic pulmonary inflammation, prevented fibrosis development and improved physiological respiratory lung function in the ARDS/DAD mouse model. We concluded that a therapeutic strategy using SAHPs targeting SR-B receptors is a potential novel effective treatment for inflammation-induced ARDS, DAD and lung fibrosis of various etiologies.


Asunto(s)
Citocinas , Ratones Endogámicos ICR , Péptidos , Fibrosis Pulmonar , Síndrome de Dificultad Respiratoria , Animales , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/patología , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/patología , Ratones , Masculino , Citocinas/metabolismo , Péptidos/farmacología , Péptidos/química , Modelos Animales de Enfermedad , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo
2.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36293292

RESUMEN

The pathogenesis of autoimmune arthritis is a hot topic in current research. The main focus of this work was to study cytokines released in CFA-induced arthritis in ICR mice as well as the regulation of blood levels of cytokines by two peptides of the innate immunity protein Tag7 (PGLYRP1) capable of blocking the activation of the TNFR1 receptor. Arthritis was induced by local periarticular single-dose injections of 40 µL of complete Freund's adjuvant (CFA) into the left ankle joints of mice. The levels of chemokines and cytokines in plasma were measured using a Bio-Plex Pro Mouse Cytokine Kit at 3, 10, and 21 days after arthritis induction. Tag7 peptides were shown to decrease the blood levels of the pro-inflammatory cytokines IL-6, TNF, and IL-1ß. Administration of peptides also decreased the levels of chemokines MGSA/CXCL1, MIP-2α/CXCL2, ENA78/CXCL5, MIG/CXCL9, IP-10/CXCL10, MCP-1/CCL2, and RANTES/CCL5. Furthermore, a decrease in the levels of cytokines IL7, G-CSF, and M-CSF was demonstrated. Addition of the studied peptides strongly affected IFN-γ concentration. We believe that a decrease in the levels of cytokine IFN-γ was associated with a therapeutic effect of Tag7 peptides manifested in alleviation of the destruction of cartilage and bone tissues in the CFA-induced arthritis.


Asunto(s)
Artritis Experimental , Artritis , Ratones , Animales , Citocinas/metabolismo , Adyuvante de Freund , Quimiocina CCL5 , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor Estimulante de Colonias de Macrófagos , Quimiocina CXCL10 , Interleucina-6 , Quimiocina CXCL2 , Interleucina-7 , Ratones Endogámicos ICR , Inmunidad Innata , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Artritis Experimental/tratamiento farmacológico
3.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681871

RESUMEN

Infection caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) in many cases is accompanied by the release of a large amount of proinflammatory cytokines in an event known as "cytokine storm", which is associated with severe coronavirus disease 2019 (COVID-19) cases and high mortality. The excessive production of proinflammatory cytokines is linked, inter alia, to the enhanced activity of receptors capable of recognizing the conservative regions of pathogens and cell debris, namely TLRs, TREM-1 and TNFR1. Here we report that peptides derived from innate immunity protein Tag7 inhibit activation of TREM-1 and TNFR1 receptors during acute inflammation. Peptides from the N-terminal fragment of Tag7 bind only to TREM-1, while peptides from the C-terminal fragment interact solely with TNFR1. Selected peptides are capable of inhibiting the production of proinflammatory cytokines both in peripheral blood mononuclear cells (PBMCs) from healthy donors and in vivo in the mouse model of acute lung injury (ALI) by diffuse alveolar damage (DAD). Treatment with peptides significantly decreases the infiltration of mononuclear cells to lungs in animals with DAD. Our findings suggest that Tag7-derived peptides might be beneficial in terms of the therapy or prevention of acute lung injury, e.g., for treating COVID-19 patients with severe pulmonary lesions.


Asunto(s)
Lesión Pulmonar Aguda/patología , Citocinas/química , Péptidos/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Lesión Pulmonar Aguda/metabolismo , Animales , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Lipopolisacáridos/farmacología , Pulmón/metabolismo , Pulmón/patología , Activación de Linfocitos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos ICR , Péptidos/química , Péptidos/farmacología , Unión Proteica , Receptores Tipo I de Factores de Necrosis Tumoral/antagonistas & inhibidores , Receptor Activador Expresado en Células Mieloides 1/antagonistas & inhibidores
4.
Biomedicines ; 10(10)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36289607

RESUMEN

Traumatic injury of the spinal cord is still one of the most challenging problems in the neurosurgical practice. Despite a long history of implementation of translational medicine in the field of spinal cord injury (SCI), it remains one of the most frequent causes of human disability and a critical situation for world healthcare systems. Here, we used our rat model of the of unilateral controlled SCI induced by a cryoinjury, which consistently reproduces glial scarring and posttraumatic cyst formation, and specifically evaluated histological, bioimaging and cytokine data. We propose a 10-grade scoring scale, which can objectively estimate the extent of damage of the experimental SCI according to the magnetic resonance imaging (MRI) results. It provides a homogeneous and reliable visual control of the dynamics of the posttraumatic processes, which makes it possible to clearly distinguish the extent of early damage, the formation of glial scars and the development of posttraumatic syringomyelic cysts. The concentration of cytokines and chemokines in the plasma following the experimental SCI increased up to two orders of magnitude in comparison with intact animals, suggesting that a traumatic injury of the spinal cord was accompanied by a remarkable cytokine storm. Our data suggested that the levels of IL-1α, IL-1ß, TNFα, GRO/KC, G-CSF, IFNγ and IL-13 may be considered as a reliable prognostic index for SCI. Finally, we demonstrated that MRI together with plasma cytokines level directly correlated and reliably predicted the clinical outcome following SCI. The present study brings novel noninvasive and intravital methods for the evaluation of the therapeutic efficacy of SCI treatment protocols, which may be easily translated into the clinical practice.

5.
Front Surg ; 8: 607551, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336912

RESUMEN

According to the World Health Organization, every year worldwide up to 500,000 people suffer a spinal cord injury (SCI). Various animal biomodels are essential for searching for novel protocols and therapeutic approaches for SCI treatment. We have developed an original model of post-traumatic spinal cord glial scarring in rats through cryoapplication. With this method the low-temperature liquid nitrogen is used for the cryodestruction of the spinal cord tissue. Forty-five Sprague Dawley (SD) non-linear male rats of the Specific-pathogen-free (SPF) category were included in this experimental study. A Th13 unilateral hemilaminectomy was performed with dental burr using an operating microscope. A specifically designed cryogenic probe was applied to the spinal cord for one minute through the created bone defect. The animals were euthanized at different time points ranging from 1 to 60 days after cold-induced injury. Their Th12-L1 vertebrae with the injured spinal cord region were removed "en bloc" for histological examination. Our data demonstrate that cryoapplication producing a topical cooling around-20°C, caused a highly standardized transmural lesion of the spinal cord in the dorsoventral direction. The lesion had an "hour-glass" shape on histological sections. During the entire study period (days 1-60 of the post-trauma period), the necrotic processes and the development of the glial scar (lesion evolution) were contained in the surgically approached vertebral space (Th13). Unlike other known experimental methods of SCI simulation (compression, contusion, etc.), the proposed technique is characterized by minimal invasiveness, high precision, and reproducibility. Also, histological findings, lesion size, and postoperative clinical course varied only slightly between different animals. An original design of the cryoprobe used in the study played a primary role in the achieving of these results. The spinal cord lesion's detailed functional morphology is described at different time points (1-60 days) after the produced cryoinjury. Also, changes in the number of macrophages at distinct time points, neoangiogenesis and the formation of the glial scar's fibrous component, including morphodynamic characteristics of its evolution, are analyzed. The proposed method of cryoapplication for inducing reproducible glial scars could facilitate a better understanding of the self-recovery processes in the damaged spinal cord. It would be evidently helpful for finding innovative approaches to the SCI treatment.

6.
Int J Biol Macromol ; 140: 1277-1283, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31470057

RESUMEN

Citrobacter freundii methionine γ-lyase (MGL), in addition to the physiological reaction, catalyzes the ß-elimination reaction of S-alk(en)yl-L-cysteine sulfoxides to yield thiosulfinates, which have antibacterial activity. We have obtained the mutant form C115H MGL, which cleaves S-alk(en)yl-L-cysteine sulfoxides more effectively than the wild type enzyme does. The binary system MGL/S-alk(en)yl-L-cysteine sulfoxides may be considered as a new pharmacological pair in enzyme prodrug therapy (EPT). Despite of the successful application of this pair in antibacterial studies in vitro, in vivo experiments may lead to several problems typical of therapeutic proteins including a relatively short-lasting biological activity. To circumvent these problems, we have investigated several approaches to improve safety and efficacy of the enzyme component of the pharmacological pair. This included covalent attachment of poly(ethylene glycol) to the enzyme, its encapsulation in liposomes and polymeric vesicles (PICsomes). The steady-state and pharmacokinetic parameters of modified/encapsulated enzyme were determined. It was demonstrated that the encapsulation in PICsomes prolongs in vivo stability of C115H MGL to over 42 h compared to PEGylated enzyme (3 h). Antibacterial activity of binary system ("pharmacological pair") modified/encapsulated enzyme/S-alk(en)yl-L-cysteine sulfoxides was tested and remained the same as for the naked enzyme. Thus, the usage of MGL-loaded PICsomes as enzymatic nanoreactors in ETP to produce antimicrobial thiosulfinates is promising.


Asunto(s)
Liasas de Carbono-Azufre/farmacocinética , Profármacos/farmacocinética , Animales , Antiinfecciosos/farmacología , Liasas de Carbono-Azufre/sangre , Liasas de Carbono-Azufre/farmacología , Citrobacter freundii/enzimología , Femenino , Liposomas , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Polietilenglicoles/química , Profármacos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA