Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 481(3-4): 251-258, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27816452

RESUMEN

The expression of the transcriptional coactivator PGC1α is increased in skeletal muscles during exercise. Previously, we showed that increased PGC1α leads to prolonged exercise performance (the duration for which running can be continued) and, at the same time, increases the expression of branched-chain amino acid (BCAA) metabolism-related enzymes and genes that are involved in supplying substrates for the TCA cycle. We recently created mice with PGC1α knockout specifically in the skeletal muscles (PGC1α KO mice), which show decreased mitochondrial content. In this study, global gene expression (microarray) analysis was performed in the skeletal muscles of PGC1α KO mice compared with that of wild-type control mice. As a result, decreased expression of genes involved in the TCA cycle, oxidative phosphorylation, and BCAA metabolism were observed. Compared with previously obtained microarray data on PGC1α-overexpressing transgenic mice, each gene showed the completely opposite direction of expression change. Bioinformatic analysis of the promoter region of genes with decreased expression in PGC1α KO mice predicted the involvement of several transcription factors, including a nuclear receptor, ERR, in their regulation. As PGC1α KO microarray data in this study show opposing findings to the PGC1α transgenic data, a loss-of-function experiment, as well as a gain-of-function experiment, revealed PGC1α's function in the oxidative energy metabolism of skeletal muscles.


Asunto(s)
Eliminación de Gen , Regulación de la Expresión Génica , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Transactivadores/metabolismo , Animales , Biología Computacional , Regulación hacia Abajo/genética , Masculino , Redes y Vías Metabólicas/genética , Ratones Noqueados , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/genética , Transactivadores/genética
2.
Biosci Biotechnol Biochem ; 80(2): 288-90, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26745679
3.
J Lipid Res ; 56(12): 2286-96, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26438561

RESUMEN

Exercise training influences phospholipid fatty acid composition in skeletal muscle and these changes are associated with physiological phenotypes; however, the molecular mechanism of this influence on compositional changes is poorly understood. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear receptor coactivator, promotes mitochondrial biogenesis, the fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. Because exercise training induces these adaptations, together with increased PGC-1α, PGC-1α may contribute to the exercise-mediated change in phospholipid fatty acid composition. To determine the role of PGC-1α, we performed lipidomic analyses of skeletal muscle from genetically modified mice that overexpress PGC-1α in skeletal muscle or that carry KO alleles of PGC-1α. We found that PGC-1α affected lipid profiles in skeletal muscle and increased several phospholipid species in glycolytic muscle, namely phosphatidylcholine (PC) (18:0/22:6) and phosphatidylethanolamine (PE) (18:0/22:6). We also found that exercise training increased PC (18:0/22:6) and PE (18:0/22:6) in glycolytic muscle and that PGC-1α was required for these alterations. Because phospholipid fatty acid composition influences cell permeability and receptor stability at the cell membrane, these phospholipids may contribute to exercise training-mediated functional changes in the skeletal muscle.


Asunto(s)
Músculo Esquelético/metabolismo , Fosfolípidos/metabolismo , Condicionamiento Físico Animal/fisiología , Factores de Transcripción/metabolismo , Animales , Humanos , Masculino , Espectrometría de Masas , Ratones , Ratones Transgénicos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Factores de Transcripción/genética
4.
J Nutr Sci Vitaminol (Tokyo) ; 61(6): 441-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26875484

RESUMEN

Asparagine synthetase (ASNS), 3-phosphoglycerate dehydrogenase (PHGDH) and serine dehydratase (SDS) in rat liver are expressed in response to protein and amino acid intake. In the present study, we examined the expression of these enzymes in relation to amino acid imbalance caused by leucine. Rats were subjected to leucine administration in the diet or orally between meals. Consumption of more than 2% leucine in a 6% casein diet suppressed food intake and caused growth retardation in a dose-dependent manner, but this was not seen in a 12% or 40% casein diet. ASNS and PHGDH expression in the liver was significantly induced by the 6% casein diet and was suppressed by leucine in a dose-dependent manner, whereas the SDS expression was induced. These effects were leucine specific and not seen with ingestion of isoleucine or valine. However, leucine orally administered between meals did not change the food intake or growth of rats fed a 6% casein die, though it similarly affected the expression of ASNS, PHGDH and SDS in the liver. These results suggest that the growth retardation caused by leucine imbalance was mainly because of the suppression of food intake, and demonstrated that there are no causal relationships between ASNS, PHGDH and SDS expression and amino acid imbalance caused by leucine.


Asunto(s)
Aspartatoamoníaco Ligasa/metabolismo , Dieta , Ingestión de Alimentos/efectos de los fármacos , L-Serina Deshidratasa/metabolismo , Leucina/efectos adversos , Hígado/efectos de los fármacos , Fosfoglicerato-Deshidrogenasa/metabolismo , Aminoácidos/administración & dosificación , Aminoácidos/metabolismo , Animales , Peso Corporal , Caseínas/administración & dosificación , Regulación hacia Abajo , Ingestión de Energía/efectos de los fármacos , Crecimiento/efectos de los fármacos , Homeostasis/efectos de los fármacos , Isoleucina/farmacología , Leucina/administración & dosificación , Hígado/metabolismo , Masculino , Ratas Sprague-Dawley , Activación Transcripcional , Regulación hacia Arriba , Valina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA