Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Microbiol ; 23(2): e13273, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33010083

RESUMEN

The initiation of Aspergillus fumigatus infection occurs via dormant conidia deposition into the airways. Therefore, conidial germination and subsequent hyphal extension and growth occur in a sustained heat shock (HS) environment promoted by the host. The cell wall integrity pathway (CWIP) and the essential eukaryotic chaperone Hsp90 are critical for fungi to survive HS. Although A. fumigatus is a thermophilic fungus, the mechanisms underpinning the HS response are not thoroughly described and important to define its role in pathogenesis, virulence and antifungal drug responses. Here, we investigate the contribution of the CWIP in A. fumigatus thermotolerance. We observed that the CWIP components PkcA, MpkA and RlmA are Hsp90 clients and that a PkcAG579R mutation abolishes this interaction. PkcAG579R also abolishes MpkA activation in the short-term response to HS. Biochemical and biophysical analyses indicated that Hsp90 is a dimeric functional ATPase, which has a higher affinity for ADP than ATP and prevents MpkA aggregation in vitro. Our data suggest that the CWIP is constitutively required for A. fumigatus to cope with the temperature increase found in the mammalian lung environment, emphasising the importance of this pathway in supporting thermotolerance and cell wall integrity.


Asunto(s)
Adaptación Fisiológica , Aspergillus fumigatus/fisiología , Pared Celular/fisiología , Proteínas HSP90 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Aspergilosis/microbiología , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Interacciones Microbiota-Huesped , Mutación , Proteína Quinasa C/metabolismo , Transducción de Señal , Esporas Fúngicas/crecimiento & desarrollo , Virulencia
2.
Arch Biochem Biophys ; 690: 108468, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679196

RESUMEN

Hsp90 is a ubiquitous, homodimer and modular molecular chaperone. Each Hsp90 protomer has three different domains, named the N-terminal domain (NTD), middle domain (MD) and C-terminal domain (CTD). The Hsp90 molecular cycle involves ATP binding and hydrolysis, which drive conformational changes. Hsp90 is critical for the viability of eukaryotic organisms, including the protozoan that causes the severe form of malaria, Plasmodium falciparum, the growth and differentiation of which are compromised when Hsp90 is inhibited. Here, we characterize the structure of a recombinant P. falciparum Hsp90 (PfHsp90) protein, as well as its MD (PfHsp90MD) and NTD plus MD (PfHsp90NMD) constructs. All the proteins were obtained with high purity and in the folded state. PfHsp90 and PfHsp90NMD interacted with adenosine nucleotides via the NTD, and Mg2+ was critical for strong binding. PfHsp90 behaved mostly as elongated and flexible dimers in solution, which dissociate with a sub-micromolar dissociation constant. The PfHsp90MD and PfHsp90NMD constructs behaved as globular and elongated monomers, respectively, confirming the importance of the CTD for dimerization. Small angle X-ray scattering data were obtained for all the constructs, and ab initio models were constructed, revealing PfHsp90 in an open conformation and as a greatly elongated and flexible protein.


Asunto(s)
Proteínas HSP90 de Choque Térmico/química , Plasmodium falciparum/química , Proteínas Protozoarias/química , Proteínas Recombinantes/química , Adenosina/química , Adenosina Trifosfato/química , Sitios de Unión , Reactivos de Enlaces Cruzados/química , Cristalografía por Rayos X , Hidrólisis , Magnesio/química , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína
3.
Curr Res Struct Biol ; 7: 100143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681238

RESUMEN

The 21st amino acid, selenocysteine (Sec), is synthesized on its dedicated transfer RNA (tRNASec). In bacteria, Sec is synthesized from Ser-tRNA[Ser]Sec by Selenocysteine Synthase (SelA), which is a pivotal enzyme in the biosynthesis of Sec. The structural characterization of bacterial SelA is of paramount importance to decipher its catalytic mechanism and its role in the regulation of the Sec-synthesis pathway. Here, we present a comprehensive single-particle cryo-electron microscopy (SPA cryoEM) structure of the bacterial SelA with an overall resolution of 2.69 Å. Using recombinant Escherichia coli SelA, we purified and prepared samples for single-particle cryoEM. The structural insights from SelA, combined with previous in vivo and in vitro knowledge, underscore the indispensable role of decamerization in SelA's function. Moreover, our structural analysis corroborates previous results that show that SelA adopts a pentamer of dimers configuration, and the active site architecture, substrate binding pocket, and key K295 catalytic residue are identified and described in detail. The differences in protein architecture and substrate coordination between the bacterial enzyme and its counterparts offer compelling structural evidence supporting the independent molecular evolution of the bacterial and archaea/eukarya Ser-Sec biosynthesis present in the natural world.

4.
Biomolecules ; 13(7)2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37509166

RESUMEN

Viral entry and fertilization are distinct biological processes that share a common mechanism: membrane fusion. In viral entry, enveloped viruses attach to the host cell membrane, triggering a series of conformational changes in the viral fusion proteins. This results in the exposure of a hydrophobic fusion peptide, which inserts into the host membrane and brings the viral and host membranes into close proximity. Subsequent structural rearrangements in opposing membranes lead to their fusion. Similarly, membrane fusion occurs when gametes merge during the fertilization process, though the exact mechanism remains unclear. Structural biology has played a pivotal role in elucidating the molecular mechanisms underlying membrane fusion. High-resolution structures of the viral and fertilization fusion-related proteins have provided valuable insights into the conformational changes that occur during this process. Understanding these mechanisms at a molecular level is essential for the development of antiviral therapeutics and tools to influence fertility. In this review, we will highlight the biological importance of membrane fusion and how protein structures have helped visualize both common elements and subtle divergences in the mechanisms behind fusion; in addition, we will examine the new tools that recent advances in structural biology provide researchers interested in a frame-by-frame understanding of membrane fusion.


Asunto(s)
Fusión de Membrana , Virosis , Humanos , Proteínas Virales de Fusión/química , Antivirales , Fertilización
5.
Int J Biol Macromol ; 130: 125-138, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30797004

RESUMEN

Hsp90s are key proteins in cellular homeostasis since they interact with many client proteins. Several studies indicated that Hsp90s are potential targets for treating diseases, such as cancer or malaria. It has been shown that Hsp90s from different organisms have peculiarities despite their high sequence identity. Therefore, a detailed comparative analysis of several Hsp90 proteins is relevant to the overall understanding of their activity. Accordingly, the goal of this work was to evaluate the interaction of either ADP or ATP with recombinant Hsp90s from different organisms (human α and ß isoforms, Plasmodium falciparum, Leishmania braziliensis, yeast and sugarcane) by isothermal titration calorimetry. The measured thermodynamic signatures of those interactions indicated that despite the high identity among all Hsp90s, they have specific thermodynamic characteristics. Specifically, the interactions with ADP are driven by enthalpy but are opposed by entropy, whereas the interaction with ATP is driven by both enthalpy and entropy. Complimentary structural and molecular dynamics studies suggested that specific interactions with ADP that differ from those with ATP may contribute to the observed enthalpies and entropies. Altogether, the data suggest that selective inhibition may be more easily achieved using analogues of the Hsp90-ADP bound state than those of Hsp90-ATP bound state.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Secuencia de Aminoácidos , Proteínas HSP90 de Choque Térmico/química , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Termodinámica
6.
Int J Biol Macromol ; 108: 193-204, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29191421

RESUMEN

The p23 proteins are small acidic proteins that aid the functional cycle of the Hsp90 molecular chaperone. Such co-chaperone acts by temporarily inhibiting the ATPase activity of Hsp90 and exhibits intrinsic chaperone activity, suggesting independent roles. A search for p23 in the Plasmodium falciparum genome led to the identification of two putative proteins showing 13% identity to each other and approximately 20% identity to human p23. To understand the presence of two p23 proteins in this organism, we generated recombinant p23 proteins (Pfp23A and Pfp23B) and investigated their structure and function. The proteins presented some similarities and dissimilarities in structural contents and showed different chemical and thermal stabilities, with Pfp23A being more stable than Pfp23B, suggesting that these proteins may present different functions in this organism. Both Pfp23 proteins behaved as elongated monomers in solution and were capable of preventing the thermal-induced aggregation of model client proteins with different efficiencies. Finally, the Pfp23 proteins inhibited the ATPase activity of recombinant P. falciparum Hsp90 (PfHsp90). These results validate the studied proteins as p23 proteins and co-chaperones of PfHsp90.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Conformación Proteica , Secuencia de Aminoácidos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Expresión Génica , Genoma de Protozoos , Hidrólisis , Modelos Moleculares , Chaperonas Moleculares/genética , Estabilidad Proteica , Proteínas Recombinantes , Análisis de Secuencia de ADN , Solubilidad , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA