Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 456(7218): 66-72, 2008 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-18987736

RESUMEN

Acute myeloid leukaemia is a highly malignant haematopoietic tumour that affects about 13,000 adults in the United States each year. The treatment of this disease has changed little in the past two decades, because most of the genetic events that initiate the disease remain undiscovered. Whole-genome sequencing is now possible at a reasonable cost and timeframe to use this approach for the unbiased discovery of tumour-specific somatic mutations that alter the protein-coding genes. Here we present the results obtained from sequencing a typical acute myeloid leukaemia genome, and its matched normal counterpart obtained from the same patient's skin. We discovered ten genes with acquired mutations; two were previously described mutations that are thought to contribute to tumour progression, and eight were new mutations present in virtually all tumour cells at presentation and relapse, the function of which is not yet known. Our study establishes whole-genome sequencing as an unbiased method for discovering cancer-initiating mutations in previously unidentified genes that may respond to targeted therapies.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Genoma Humano/genética , Leucemia Mieloide Aguda/genética , Estudios de Casos y Controles , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Genómica , Humanos , Mutagénesis Insercional , Mutación , Polimorfismo de Nucleótido Simple , Recurrencia , Análisis de Secuencia de ADN , Eliminación de Secuencia , Piel/metabolismo
2.
Nature ; 455(7216): 1069-75, 2008 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-18948947

RESUMEN

Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers--including NF1, APC, RB1 and ATM--and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.


Asunto(s)
Adenocarcinoma Bronquioloalveolar/genética , Neoplasias Pulmonares/genética , Mutación/genética , Femenino , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Masculino , Proto-Oncogenes/genética
3.
Nat Genet ; 36(12): 1268-74, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15531882

RESUMEN

Salmonella enterica serovars often have a broad host range, and some cause both gastrointestinal and systemic disease. But the serovars Paratyphi A and Typhi are restricted to humans and cause only systemic disease. It has been estimated that Typhi arose in the last few thousand years. The sequence and microarray analysis of the Paratyphi A genome indicates that it is similar to the Typhi genome but suggests that it has a more recent evolutionary origin. Both genomes have independently accumulated many pseudogenes among their approximately 4,400 protein coding sequences: 173 in Paratyphi A and approximately 210 in Typhi. The recent convergence of these two similar genomes on a similar phenotype is subtly reflected in their genotypes: only 30 genes are degraded in both serovars. Nevertheless, these 30 genes include three known to be important in gastroenteritis, which does not occur in these serovars, and four for Salmonella-translocated effectors, which are normally secreted into host cells to subvert host functions. Loss of function also occurs by mutation in different genes in the same pathway (e.g., in chemotaxis and in the production of fimbriae).


Asunto(s)
Evolución Molecular , Variación Genética , Genoma Bacteriano , Mutación/genética , Salmonella paratyphi A/genética , Salmonella typhi/genética , Secuencia de Bases , Biblioteca de Genes , Componentes Genómicos/genética , Humanos , Análisis por Micromatrices , Datos de Secuencia Molecular , Seudogenes/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
4.
Nature ; 434(7034): 724-31, 2005 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-15815621

RESUMEN

Human chromosome 2 is unique to the human lineage in being the product of a head-to-head fusion of two intermediate-sized ancestral chromosomes. Chromosome 4 has received attention primarily related to the search for the Huntington's disease gene, but also for genes associated with Wolf-Hirschhorn syndrome, polycystic kidney disease and a form of muscular dystrophy. Here we present approximately 237 million base pairs of sequence for chromosome 2, and 186 million base pairs for chromosome 4, representing more than 99.6% of their euchromatic sequences. Our initial analyses have identified 1,346 protein-coding genes and 1,239 pseudogenes on chromosome 2, and 796 protein-coding genes and 778 pseudogenes on chromosome 4. Extensive analyses confirm the underlying construction of the sequence, and expand our understanding of the structure and evolution of mammalian chromosomes, including gene deserts, segmental duplications and highly variant regions.


Asunto(s)
Cromosomas Humanos Par 2/genética , Cromosomas Humanos Par 4/genética , Animales , Composición de Base , Secuencia de Bases , Centrómero/genética , Secuencia Conservada/genética , Islas de CpG/genética , Eucromatina/genética , Etiquetas de Secuencia Expresada , Duplicación de Gen , Variación Genética/genética , Genómica , Humanos , Datos de Secuencia Molecular , Mapeo Físico de Cromosoma , Polimorfismo Genético/genética , Primates/genética , Proteínas/genética , Seudogenes/genética , ARN Mensajero/análisis , ARN Mensajero/genética , ARN no Traducido/análisis , ARN no Traducido/genética , Recombinación Genética/genética , Análisis de Secuencia de ADN
5.
Blood ; 111(9): 4809-12, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18160671

RESUMEN

Somatic mutations in JAK2 are frequently found in myeloproliferative diseases, and gain-of-function JAK3 alleles have been identified in M7 acute myeloid leukemia (AML), but a role for JAK1 in AML has not been described. We screened the entire coding region of JAK1 by total exonic resequencing of bone marrow DNA samples from 94 patients with de novo AML. We identified 2 novel somatic mutations in highly conserved residues of the JAK1 gene (T478S, V623A), in 2 separate patients and confirmed these by resequencing germ line DNA samples from the same patients. Overexpression of mutant JAK1 did not transform primary murine cells in standard assays, but compared with wild-type JAK1, JAK1(T478S), and JAK1(V623A) expression was associated with increased STAT1 activation in response to type I interferon and activation of multiple downstream signaling pathways. This is the first report to demonstrate somatic JAK1 mutations in AML and suggests that JAK1 mutations may function as disease-modifying mutations in AML pathogenesis.


Asunto(s)
Janus Quinasa 1/genética , Leucemia Mieloide Aguda/genética , Mutación , Animales , Análisis Mutacional de ADN , Humanos , Leucemia Mieloide Aguda/etiología , Ratones , Mutación Missense , Factor de Transcripción STAT1/metabolismo , Transducción Genética
6.
Blood ; 111(9): 4797-808, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18270328

RESUMEN

Activating mutations in tyrosine kinase (TK) genes (eg, FLT3 and KIT) are found in more than 30% of patients with de novo acute myeloid leukemia (AML); many groups have speculated that mutations in other TK genes may be present in the remaining 70%. We performed high-throughput resequencing of the kinase domains of 26 TK genes (11 receptor TK; 15 cytoplasmic TK) expressed in most AML patients using genomic DNA from the bone marrow (tumor) and matched skin biopsy samples ("germline") from 94 patients with de novo AML; sequence variants were validated in an additional 94 AML tumor samples (14.3 million base pairs of sequence were obtained and analyzed). We identified known somatic mutations in FLT3, KIT, and JAK2 TK genes at the expected frequencies and found 4 novel somatic mutations, JAK1(V623A), JAK1(T478S), DDR1(A803V), and NTRK1(S677N), once each in 4 respective patients of 188 tested. We also identified novel germline sequence changes encoding amino acid substitutions (ie, nonsynonymous changes) in 14 TK genes, including TYK2, which had the largest number of nonsynonymous sequence variants (11 total detected). Additional studies will be required to define the roles that these somatic and germline TK gene variants play in AML pathogenesis.


Asunto(s)
Mutación de Línea Germinal , Leucemia Mieloide Aguda/genética , Mutación , Proteínas Tirosina Quinasas/genética , Análisis Mutacional de ADN , Humanos
7.
Nature ; 424(6945): 157-64, 2003 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-12853948

RESUMEN

Human chromosome 7 has historically received prominent attention in the human genetics community, primarily related to the search for the cystic fibrosis gene and the frequent cytogenetic changes associated with various forms of cancer. Here we present more than 153 million base pairs representing 99.4% of the euchromatic sequence of chromosome 7, the first metacentric chromosome completed so far. The sequence has excellent concordance with previously established physical and genetic maps, and it exhibits an unusual amount of segmentally duplicated sequence (8.2%), with marked differences between the two arms. Our initial analyses have identified 1,150 protein-coding genes, 605 of which have been confirmed by complementary DNA sequences, and an additional 941 pseudogenes. Of genes confirmed by transcript sequences, some are polymorphic for mutations that disrupt the reading frame.


Asunto(s)
Cromosomas Humanos Par 7 , Animales , Secuencia de Bases , Duplicación de Gen , Humanos , Ratones , Datos de Secuencia Molecular , Mapeo Físico de Cromosoma , Proteínas/genética , Seudogenes , ARN no Traducido , Análisis de Secuencia de ADN , Especificidad de la Especie , Síndrome de Williams/genética
8.
PLoS Biol ; 1(2): E45, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14624247

RESUMEN

The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis/genética , Genoma , Genómica/métodos , Animales , Evolución Biológica , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Análisis por Conglomerados , Codón , Secuencia Conservada , Evolución Molecular , Exones , Biblioteca de Genes , Secuencias Repetitivas Esparcidas , Intrones , MicroARNs/genética , Modelos Genéticos , Modelos Estadísticos , Datos de Secuencia Molecular , Familia de Multigenes , Sistemas de Lectura Abierta , Mapeo Físico de Cromosoma , Plásmidos/metabolismo , Estructura Terciaria de Proteína , Proteínas/química , ARN/química , ARN Ribosómico/genética , ARN Lider Empalmado , ARN de Transferencia/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
9.
PLoS One ; 2(5): e426, 2007 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-17487277

RESUMEN

BACKGROUND: Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC) specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16) of FGFR4 (Glu681Lys), identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr) in a lung adenocarcinoma cell line. CONCLUSIONS/SIGNIFICANCE: This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas.


Asunto(s)
Adenocarcinoma/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Mutación , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal/genética , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/química , Homología de Secuencia de Aminoácido
10.
Blood ; 110(5): 1648-55, 2007 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-17494858

RESUMEN

Severe congenital neutropenia (SCN) is an inborn disorder of granulopoiesis. Like most other bone marrow failure syndromes, it is associated with a marked propensity to transform into a myelodysplastic syndrome (MDS) or acute leukemia, with a cumulative rate of transformation to MDS/leukemia that exceeds 20%. The genetic (and/or epigenetic) changes that contribute to malignant transformation in SCN are largely unknown. In this study, we performed mutational profiling of 14 genes previously implicated in leukemogenesis using 14 MDS/leukemia samples from patients with SCN. We used high-throughput exon-based resequencing of whole-genome-amplified genomic DNA with a semiautomated method to detect mutations. The sensitivity and specificity of the sequencing pipeline was validated by determining the frequency of mutations in these 14 genes using 188 de novo AML samples. As expected, mutations of tyrosine kinase genes (FLT3, KIT, and JAK2) were common in de novo AML, with a cumulative frequency of 30%. In contrast, no mutations in these genes were detected in the SCN samples; instead, mutations of CSF3R, encoding the G-CSF receptor, were common. These data support the hypothesis that mutations of CSF3R may provide the "activated tyrosine kinase signal" that is thought to be important for leukemogenesis.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Neutropenia/genética , Proteínas Tirosina Quinasas/genética , Receptores del Factor Estimulante de Colonias/genética , Adulto , Análisis Mutacional de ADN , Activación Enzimática/genética , Epigénesis Genética , Enfermedades Genéticas Congénitas/complicaciones , Genoma Humano/genética , Humanos , Leucemia Mieloide Aguda/etiología , Síndromes Mielodisplásicos/etiología , Síndromes Mielodisplásicos/genética , Neutropenia/complicaciones , Neutropenia/congénito
11.
Genome Res ; 15(2): 195-204, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15653831

RESUMEN

Basic medical research critically depends on the finished human genome sequence. Two types of gaps are known to exist in the human genome: those associated with heterochromatic sequences and those embedded within euchromatin. We identified and analyzed a euchromatic island within the pericentromeric repeats of the human Y chromosome. This 450-kb island, although not recalcitrant to subcloning and present in 100 tested males from different ethnic origins, was not detected and is not contained within the published Y chromosomal sequence. The entire 450-kb interval is almost completely duplicated and consists predominantly of interchromosomal rather than intrachromosomal duplication events that are usually prevalent on the Y chromosome. We defined the modular structure of this interval and detected a total of 128 underlying pairwise alignments (>/=90% and >/=1 kb in length) to various autosomal pericentromeric and ancestral pericentromeric regions. We also analyzed the putative gene content of this region by a combination of in silico gene prediction and paralogy analysis. We can show that even in this exceptionally duplicated region of the Y chromosome, eight putative genes with open reading frames reside, including fusion transcripts formed by the splicing of exons from two different duplication modules as well as members of the homeobox gene family DUX.


Asunto(s)
Centrómero/genética , Cromosomas Humanos Y/genética , Duplicación de Gen , Secuencia de Aminoácidos/genética , Mapeo Cromosómico/métodos , Etnicidad/genética , Eucromatina/genética , Exones/genética , Etiquetas de Secuencia Expresada , Genes/genética , Genes Homeobox/genética , Humanos , Intrones/genética , Masculino , Datos de Secuencia Molecular , Seudogenes/genética
12.
Nature ; 423(6942): 825-37, 2003 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-12815422

RESUMEN

The male-specific region of the Y chromosome, the MSY, differentiates the sexes and comprises 95% of the chromosome's length. Here, we report that the MSY is a mosaic of heterochromatic sequences and three classes of euchromatic sequences: X-transposed, X-degenerate and ampliconic. These classes contain all 156 known transcription units, which include 78 protein-coding genes that collectively encode 27 distinct proteins. The X-transposed sequences exhibit 99% identity to the X chromosome. The X-degenerate sequences are remnants of ancient autosomes from which the modern X and Y chromosomes evolved. The ampliconic class includes large regions (about 30% of the MSY euchromatin) where sequence pairs show greater than 99.9% identity, which is maintained by frequent gene conversion (non-reciprocal transfer). The most prominent features here are eight massive palindromes, at least six of which contain testis genes.


Asunto(s)
Cromosomas Humanos Y/genética , Evolución Molecular , Procesos de Determinación del Sexo , Transducina , Cromosomas Humanos X/genética , Intercambio Genético/genética , Elementos Transponibles de ADN/genética , Eucromatina/genética , Femenino , Amplificación de Genes/genética , Conversión Génica/genética , Genes/genética , Heterocromatina/genética , Humanos , Hibridación Fluorescente in Situ , Masculino , Modelos Genéticos , Familia de Multigenes/genética , Especificidad de Órganos , Seudogenes/genética , Homología de Secuencia de Ácido Nucleico , Caracteres Sexuales , Especificidad de la Especie , Testículo/metabolismo , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA