RESUMEN
Ecological and evolutionary dynamics observed in mutualistic communities can be shaped by several mechanisms, including ecological interactions and their co-evolutionary consequences. Here we explore how intra and interspecific competition, together with mutualistic interactions, can affect community assembly through their effects on adaptive diversification and the emergence of biodiversity. To capture both ecological and evolutionary processes simultaneously, we used the adaptive dynamics approach based on a Lotka-Volterra framework and simulated the ecological dynamics of populations as well as the evolutionary dynamics of phenotypic traits. Depending on the initial trait values, two possible alternative evolutionary regimes emerged: traits evolve towards either optimal utilization of environmental resources or maximizing the benefits from mutualistic interactions. Diversification and overall biodiversity are mostly driven by frequency-dependent competition, while mutualism plays an important role in enhancing ecosystem productivity and evolutionary stability. Because different initial trait values in a community can lead to alternative evolutionary regimes, species loss and biological invasions could not only alter ecological dynamics but also push the system onto an alternative successional climax or evolutionary end point. It thus becomes essential to clarify the past evolutionary dynamics so as to draw conclusions on key community assembly processes.
Asunto(s)
Biodiversidad , Evolución Biológica , Ecosistema , Simbiosis/fisiología , Adaptación Biológica/genética , Adaptación Biológica/fisiología , Animales , Humanos , Modelos Biológicos , Herencia Multifactorial/fisiología , Fenotipo , Dinámica PoblacionalRESUMEN
Community and invasion ecology have mostly grown independently. There is substantial overlap in the processes captured by different models in the two fields, and various frameworks have been developed to reduce this redundancy and synthesize information content. Despite broad recognition that community and invasion ecology are interconnected, a process-based framework synthesizing models across these two fields is lacking. Here we review 65 representative community and invasion models and propose a common framework articulated around six processes (dispersal, drift, abiotic interactions, within-guild interactions, cross-guild interactions, and genetic changes). The framework is designed to synthesize the content of the two fields, provide a general perspective on their development, and enable their comparison. The application of this framework and of a novel method based on network theory reveals some lack of coherence between the two fields, despite some historical similarities. Community ecology models are characterized by combinations of multiple processes, likely reflecting the search for an overarching theory to explain community assembly and structure, drawing predominantly on interaction processes, but also accounting largely for the other processes. In contrast, most models in invasion ecology invoke fewer processes and focus more on interactions between introduced species and their novel biotic and abiotic environment. The historical dominance of interaction processes and their independent developments in the two fields is also reflected in the lower level of coherence for models involving interactions, compared to models involving dispersal, drift, and genetic changes. It appears that community ecology, with a longer history than invasion ecology, has transitioned from the search for single explanations for patterns observed in nature to investigate how processes may interact mechanistically, thereby generating and testing hypotheses. Our framework paves the way for a similar transition in invasion ecology, to better capture the dynamics of multiple alien species introduced in complex communities. Reciprocally, applying insights from invasion to community ecology will help us understand and predict the future of ecological communities in the Anthropocene, in which human activities are weakening species' natural boundaries. Ultimately, the successful integration of the two fields could advance a predictive ecology that is urgently required in a rapidly changing world.