Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 605(7909): 372-379, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35477761

RESUMEN

Post-transcriptional modifications have critical roles in tRNA stability and function1-4. In thermophiles, tRNAs are heavily modified to maintain their thermal stability under extreme growth temperatures5,6. Here we identified 2'-phosphouridine (Up) at position 47 of tRNAs from thermophilic archaea. Up47 confers thermal stability and nuclease resistance to tRNAs. Atomic structures of native archaeal tRNA showed a unique metastable core structure stabilized by Up47. The 2'-phosphate of Up47 protrudes from the tRNA core and prevents backbone rotation during thermal denaturation. In addition, we identified the arkI gene, which encodes an archaeal RNA kinase responsible for Up47 formation. Structural studies showed that ArkI has a non-canonical kinase motif surrounded by a positively charged patch for tRNA binding. A knockout strain of arkI grew slowly at high temperatures and exhibited a synthetic growth defect when a second tRNA-modifying enzyme was depleted. We also identified an archaeal homologue of KptA as an eraser that efficiently dephosphorylates Up47 in vitro and in vivo. Taken together, our findings show that Up47 is a reversible RNA modification mediated by ArkI and KptA that fine-tunes the structural rigidity of tRNAs under extreme environmental conditions.


Asunto(s)
Archaea , ARN de Transferencia , Termotolerancia , Archaea/genética , Ambientes Extremos , Fosforilación , Procesamiento Postranscripcional del ARN , ARN de Archaea/química , ARN de Archaea/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Uridina
2.
Nucleic Acids Res ; 47(4): 1964-1976, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30605516

RESUMEN

Random mutagenesis for the hyperthermophilic archaeon Thermococcus kodakarensis was established by the insertion of an artificial transposon designed to allow easy identification of the transposon-inserted locus. The phenotypic screening was applied for the isolation of thermosensitive mutants of T. kodakarensis, which resulted in the isolation of 16 mutants showing defective growth at the supraoptimal temperature 93°C. The high occurrence of the mutants suggested that the high thermotolerance of hyperthermophiles was achieved by a combination of diverse gene functions. The transposon insertion sites in two-thirds of the mutants were identified in a group of genes responsible for tRNA modifications including 7-formamidino-7-deaza-guanosine (archaeosine), N1-methyladenosine/N1-methylinosine, N4-acetylcytidine, and N2-dimethylguanosine/N2,N2-dimethylguanosine. LC-MS/MS analyses of tRNA nucleosides and fragments exhibited disappearance of the corresponding modifications in the mutants. The melting temperature of total tRNA fraction isolated from the mutants lacking archaeosine or N1-methyladenosine/N1-methylinosine decreased significantly, suggesting that the thermosensitive phenotype of these mutants was attributed to low stability of the hypomodified tRNAs. Genes for metabolism, transporters, and hypothetical proteins were also identified in the thermosensitive mutants. The present results demonstrated the usefulness of random mutagenesis for the studies on the hyperthermophile, as well as crucial roles of tRNA modifications in cellular thermotolerance.


Asunto(s)
Guanosina/análogos & derivados , Mutagénesis/genética , ARN de Transferencia/genética , Thermococcus/genética , Secuencia de Bases , Cromatografía Liquida , Regulación de la Expresión Génica Arqueal , Guanosina/química , Guanosina/genética , Nucleósidos/química , Nucleósidos/genética , Espectrometría de Masas en Tándem , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA