Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(11): e1011741, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37956166

RESUMEN

A genomic signature for endosporulation includes a gene coding for a protease, YabG, which in the model organism Bacillus subtilis is involved in assembly of the spore coat. We show that in the human pathogen Clostridioidesm difficile, YabG is critical for the assembly of the coat and exosporium layers of spores. YabG is produced during sporulation under the control of the mother cell-specific regulators σE and σK and associates with the spore surface layers. YabG shows an N-terminal SH3-like domain and a C-terminal domain that resembles single domain response regulators, such as CheY, yet is atypical in that the conserved phosphoryl-acceptor residue is absent. Instead, the CheY-like domain carries residues required for activity, including Cys207 and His161, the homologues of which form a catalytic diad in the B. subtilis protein, and also Asp162. The substitution of any of these residues by Ala, eliminates an auto-proteolytic activity as well as interdomain processing of CspBA, a reaction that releases the CspB protease, required for proper spore germination. An in-frame deletion of yabG or an allele coding for an inactive protein, yabGC207A, both cause misassemby of the coat and exosporium and the formation of spores that are more permeable to lysozyme and impaired in germination and host colonization. Furthermore, we show that YabG is required for the expression of at least two σK-dependent genes, cotA, coding for a coat protein, and cdeM, coding for a key determinant of exosporium assembly. Thus, YabG also impinges upon the genetic program of the mother cell possibly by eliminating a transcriptional repressor. Although this activity has not been described for the B. subtilis protein and most of the YabG substrates vary among sporeformers, the general role of the protease in the assembly of the spore surface is likely to be conserved across evolutionary distance.


Asunto(s)
Clostridioides difficile , Péptido Hidrolasas , Humanos , Péptido Hidrolasas/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Clostridioides , Esporas Bacterianas/metabolismo , Factores de Transcripción/metabolismo , Endopeptidasas/metabolismo , Proteínas Bacterianas/metabolismo , Bacillus subtilis/metabolismo
2.
Adv Exp Med Biol ; 1435: 219-247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38175478

RESUMEN

Research on the human gut pathogen Clostridioides (C.) difficile and its toxins continues to attract much attention as a consequence of the threat to human health posed by hypervirulent strains. Toxin A (TcdA) and Toxin B (TcdB) are the two major virulence determinants of C. difficile. Both are single-chain proteins with a similar multidomain architecture. Certain hypervirulent C. difficile strains also produce a third toxin, namely binary toxin CDT (C. difficile transferase). C. difficile toxins are the causative agents of C. difficile-associated diseases (CDADs), such as antibiotics-associated diarrhea and pseudomembranous colitis. For that reason, considerable efforts have been expended to unravel their molecular mode-of-action and the cellular mechanisms responsible for their uptake. Many of these studies have been conducted in European laboratories. Here, we provide an update on our previous review (Papatheodorou et al. Adv Exp Med Biol, 2018) on important advances in C. difficile toxins research.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Enterocolitis Seudomembranosa , Humanos , Toxinas Bacterianas/toxicidad , Transporte Biológico , Anticuerpos Antibacterianos
3.
PLoS Comput Biol ; 18(5): e1010106, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35604933

RESUMEN

Exploiting biological processes to recycle renewable carbon into high value platform chemicals provides a sustainable and greener alternative to current reliance on petrochemicals. In this regard Cupriavidus necator H16 represents a particularly promising microbial chassis due to its ability to grow on a wide range of low-cost feedstocks, including the waste gas carbon dioxide, whilst also naturally producing large quantities of polyhydroxybutyrate (PHB) during nutrient-limited conditions. Understanding the complex metabolic behaviour of this bacterium is a prerequisite for the design of successful engineering strategies for optimising product yields. We present a genome-scale metabolic model (GSM) of C. necator H16 (denoted iCN1361), which is directly constructed from the BioCyc database to improve the readability and reusability of the model. After the initial automated construction, we have performed extensive curation and both theoretical and experimental validation. By carrying out a genome-wide essentiality screening using a Transposon-directed Insertion site Sequencing (TraDIS) approach, we showed that the model could predict gene knockout phenotypes with a high level of accuracy. Importantly, we indicate how experimental and computational predictions can be used to improve model structure and, thus, model accuracy as well as to evaluate potential false positives identified in the experiments. Finally, by integrating transcriptomics data with iCN1361 we create a condition-specific model, which, importantly, better reflects PHB production in C. necator H16. Observed changes in the omics data and in-silico-estimated alterations in fluxes were then used to predict the regulatory control of key cellular processes. The results presented demonstrate that iCN1361 is a valuable tool for unravelling the system-level metabolic behaviour of C. necator H16 and can provide useful insights for designing metabolic engineering strategies.


Asunto(s)
Cupriavidus necator , Biotecnología , Dióxido de Carbono/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Ingeniería Metabólica , Transcriptoma
4.
PLoS Pathog ; 16(9): e1008852, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32960931

RESUMEN

Enzymatic inactivation of Rho-family GTPases by the glucosyltransferase domain of Clostridioides difficile Toxin B (TcdB) gives rise to various pathogenic effects in cells that are classically thought to be responsible for the disease symptoms associated with C. difficile infection (CDI). Recent in vitro studies have shown that TcdB can, under certain circumstances, induce cellular toxicities that are independent of glucosyltransferase (GT) activity, calling into question the precise role of GT activity. Here, to establish the importance of GT activity in CDI disease pathogenesis, we generated the first described mutant strain of C. difficile producing glucosyltransferase-defective (GT-defective) toxin. Using allelic exchange (AE) technology, we first deleted tcdA in C. difficile 630Δerm and subsequently introduced a deactivating D270N substitution in the GT domain of TcdB. To examine the role of GT activity in vivo, we tested each strain in two different animal models of CDI pathogenesis. In the non-lethal murine model of infection, the GT-defective mutant induced minimal pathology in host tissues as compared to the profound caecal inflammation seen in the wild-type and 630ΔermΔtcdA (ΔtcdA) strains. In the more sensitive hamster model of CDI, whereas hamsters in the wild-type or ΔtcdA groups succumbed to fulminant infection within 4 days, all hamsters infected with the GT-defective mutant survived the 10-day infection period without primary symptoms of CDI or evidence of caecal inflammation. These data demonstrate that GT activity is indispensable for disease pathogenesis and reaffirm its central role in disease and its importance as a therapeutic target for small-molecule inhibition.


Asunto(s)
Proteínas Bacterianas , Toxinas Bacterianas , Clostridioides difficile , Enterocolitis Seudomembranosa , Glucosiltransferasas , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Clostridioides difficile/enzimología , Clostridioides difficile/genética , Clostridioides difficile/patogenicidad , Cricetinae , Modelos Animales de Enfermedad , Enterocolitis Seudomembranosa/enzimología , Enterocolitis Seudomembranosa/genética , Enterocolitis Seudomembranosa/patología , Femenino , Eliminación de Gen , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Masculino , Ratones
5.
Metab Eng ; 72: 24-34, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35149227

RESUMEN

Cupriavidus necator H16 is one of the most researched carbon dioxide (CO2)-fixing bacteria. It can store carbon in form of the polymer polyhydroxybutyrate and generate energy by aerobic hydrogen oxidation under lithoautotrophic conditions, making C. necator an ideal chassis for the biological production of value-added compounds from waste gases. Despite its immense potential, however, the experimental evidence of C. necator utilisation for autotrophic biosynthesis of chemicals is limited. Here, we genetically engineered C. necator for the high-level de novo biosynthesis of the industrially relevant sugar alcohol mannitol directly from Calvin-Benson-Bassham (CBB) cycle intermediates. To identify optimal mannitol production conditions in C. necator, a mannitol-responsive biosensor was applied for screening of mono- and bifunctional mannitol 1-phosphate dehydrogenases (MtlDs) and mannitol 1-phosphate phosphatases (M1Ps). We found that MtlD/M1P from brown alga Ectocarpus siliculosus performed overall the best under heterotrophic growth conditions and was selected to be chromosomally integrated. Consequently, autotrophic fermentation of recombinant C. necator yielded up to 3.9 g/L mannitol, representing a substantial improvement over mannitol biosynthesis using recombinant cyanobacteria. Importantly, we demonstrate that at the onset of stationary growth phase nearly 100% of carbon can be directed from the CBB cycle into mannitol through the glyceraldehyde 3-phosphate and fructose 6-phosphate intermediates. This study highlights for the first time the potential of C. necator to generate sugar alcohols from CO2 utilising precursors derived from the CBB cycle.


Asunto(s)
Técnicas Biosensibles , Cupriavidus necator , Dióxido de Carbono , Cupriavidus necator/genética , Manitol , Fosfatos
6.
Metab Eng ; 74: 178-190, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36336174

RESUMEN

3-Hydroxypropionate (3-HP) is a versatile compound for chemical synthesis and a potential building block for biodegradable polymers. Cupriavidus necator H16, a facultative chemolithoautotroph, is an attractive production chassis and has been extensively studied as a model organism for biopolymer production. Here, we engineered C. necator H16 for 3-HP biosynthesis from its central metabolism. Wild type C. necator H16 can use 3-HP as a carbon source, a highly undesirable trait for a 3-HP production chassis. However, deletion of its three (methyl-)malonate semialdehyde dehydrogenases (mmsA1, mmsA2 and mmsA3) resulted in a strain that cannot grow on 3-HP as the sole carbon source, and this strain was selected as our production host. A stepwise approach was used to construct pathways for 3-HP production via ß-alanine. Two additional gene deletion targets were identified during the pathway construction process. Deletion of the 3-hydroxypropionate dehydrogenase, encoded by hpdH, prevented the re-consumption of the 3-HP produced by our engineered strains, while deletion of gdhA1, annotated as a glutamate dehydrogenase, prevented the utilization of aspartate as a carbon source, one of the key pathway intermediates. The final strain carrying these deletions was able to produce up to 8 mM 3-HP heterotrophically. Furthermore, an engineered strain was able to produce 0.5 mM 3-HP under autotrophic conditions, using CO2 as sole carbon source. These results form the basis for establishing C. necator H16 as an efficient platform for the production of 3-HP and 3-HP-containing polymers.


Asunto(s)
Cupriavidus necator , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Ingeniería Metabólica , Oxidorreductasas/metabolismo , Carbono/metabolismo , Polímeros/metabolismo
7.
Appl Environ Microbiol ; 88(7): e0247921, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35285680

RESUMEN

The majority of the genes present in bacterial genomes remain poorly characterized, with up to one-third of those that are protein encoding having no definitive function. Transposon insertion sequencing represents a high-throughput technique that can help rectify this deficiency. The technology, however, can only be realistically applied to those species in which high rates of DNA transfer can be achieved. Here, we have developed a number of approaches that overcome this barrier in the autotrophic species Clostridium autoethanogenum by using a mariner-based transposon system. The inherent instability of such systems in the Escherichia coli conjugation donor due to transposition events was counteracted through the incorporation of a conditionally lethal codA marker on the plasmid backbone. Relatively low frequencies of transformation of the plasmid into C. autoethanogenum were circumvented through the use of a plasmid that is conditional for replication coupled with the routine implementation of an Illumina library preparation protocol that eliminates plasmid-based reads. A transposon library was then used to determine the essential genes needed for growth using carbon monoxide as the sole carbon and energy source. IMPORTANCE Although microbial genome sequences are relatively easily determined, assigning gene function remains a bottleneck. Consequently, relatively few genes are well characterized, leaving the function of many as either hypothetical or entirely unknown. High-throughput transposon sequencing can help remedy this deficiency, but is generally only applicable to microbes with efficient DNA transfer procedures. These exclude many microorganisms of importance to humankind either as agents of disease or as industrial process organisms. Here, we developed approaches to facilitate transposon insertion sequencing in the acetogen Clostridium autoethanogenum, a chassis being exploited to convert single-carbon waste gases CO and CO2 into chemicals and fuels at an industrial scale. This allowed the determination of gene essentiality under heterotrophic and autotrophic growth, providing insights into the utilization of CO as a sole carbon and energy source. The strategies implemented are translatable and will allow others to apply transposon insertion sequencing to other microbes where DNA transfer has until now represented a barrier to progress.


Asunto(s)
Monóxido de Carbono , Clostridium , Procesos Autotróficos , Monóxido de Carbono/metabolismo , Clostridium/metabolismo , Elementos Transponibles de ADN , Genoma Bacteriano , Mutagénesis Insercional
8.
Appl Microbiol Biotechnol ; 106(4): 1447-1458, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35092454

RESUMEN

Lactate has various uses as industrial platform chemical, poly-lactic acid precursor or feedstock for anaerobic co-cultivations. The aim of this study was to construct and characterise Acetobacterium woodii strains capable of autotrophic lactate production. Therefore, the lctBCD genes, encoding the native Lct dehydrogenase complex, responsible for lactate consumption, were knocked out. Subsequently, a gene encoding a D-lactate dehydrogenase (LDHD) originating from Leuconostoc mesenteroides was expressed in A. woodii, either under the control of the anhydrotetracycline-inducible promoter Ptet or under the lactose-inducible promoter PbgaL. Moreover, LDHD was N-terminally fused to the oxygen-independent fluorescence-activating and absorption-shifting tag (FAST) and expressed in respective A. woodii strains. Cells that produced the LDHD fusion protein were capable of lactate production of up to 18.8 mM in autotrophic batch experiments using H2 + CO2 as energy and carbon source. Furthermore, cells showed a clear and bright fluorescence during exponential growth, as well as in the stationary phase after induction, mediated by the N-terminal FAST. Flow cytometry at the single-cell level revealed phenotypic heterogeneities for cells expressing the FAST-tagged LDHD fusion protein. This study shows that FAST provides a new reporter tool to quickly analyze gene expression over the course of growth experiments of A. woodii. Consequently, fluorescence-based reporters allow for faster and more targeted optimization of production strains.Key points •Autotrophic lactate production was achieved with A. woodii. •FAST functions as fluorescent marker protein in A. woodii. •Fluorescence measurements on single-cell level revealed population heterogeneity.


Asunto(s)
Dióxido de Carbono , Ácido Láctico , Acetatos/metabolismo , Acetobacterium , Dióxido de Carbono/metabolismo , Fluorescencia
9.
Metab Eng ; 67: 308-320, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34245888

RESUMEN

Ethylene is a small hydrocarbon gas widely used in the chemical industry. Annual worldwide production currently exceeds 150 million tons, producing considerable amounts of CO2 contributing to climate change. The need for a sustainable alternative is therefore imperative. Ethylene is natively produced by several different microorganisms, including Pseudomonas syringae pv. phaseolicola via a process catalyzed by the ethylene-forming enzyme (EFE), subsequent heterologous expression of EFE has led to ethylene production in non-native bacterial hosts including Escherichia coli and cyanobacteria. However, solubility of EFE and substrate availability remain rate-limiting steps in biological ethylene production. We employed a combination of genome-scale metabolic modelling, continuous fermentation, and protein evolution to enable the accelerated development of a high efficiency ethylene producing E. coli strain, yielding a 49-fold increase in production, the most significant improvement reported to date. Furthermore, we have clearly demonstrated that this increased yield resulted from metabolic adaptations that were uniquely linked to EFE (wild type versus mutant). Our findings provide a novel solution to deregulate metabolic bottlenecks in key pathways, which can be readily applied to address other engineering challenges.


Asunto(s)
Escherichia coli , Biología de Sistemas , Escherichia coli/genética , Etilenos , Laboratorios , Ingeniería Metabólica , Pseudomonas syringae/genética
10.
Anaerobe ; 71: 102422, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34343672

RESUMEN

Clostridioides difficile R20291 is the most studied PCR-Ribotype 027 isolate. The two predominant lineages of this hypervirulent strain, however, exhibit substantive phenotypic differences and possess genomes that differ by a small number of nucleotide changes. It is important that the source of R20291 is taken into account in research outcomes.


Asunto(s)
Clostridioides/genética , Infecciones por Clostridium/microbiología , Polimorfismo de Nucleótido Simple , Clostridioides/clasificación , Clostridioides/aislamiento & purificación , Clostridioides difficile/clasificación , Clostridioides difficile/genética , Clostridioides difficile/aislamiento & purificación , Genoma Bacteriano , Humanos , Filogenia
11.
Microbiology (Reading) ; 166(6): 579-592, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32375981

RESUMEN

The strictly anaerobic bacterium Clostridium acetobutylicum is well known for its ability to convert sugars into organic acids and solvents, most notably the potential biofuel butanol. However, the regulation of its fermentation metabolism, in particular the shift from acid to solvent production, remains poorly understood. The aim of this study was to investigate whether cell-cell communication plays a role in controlling the timing of this shift or the extent of solvent formation. Analysis of the available C. acetobutylicum genome sequences revealed the presence of eight putative RRNPP-type quorum-sensing systems, here designated qssA to qssH, each consisting of an RRNPP-type regulator gene followed by a small open reading frame encoding a putative signalling peptide precursor. The identified regulator and signal peptide precursor genes were designated qsrA to qsrH and qspA to qspH, respectively. Triplicate regulator mutants were generated in strain ATCC 824 for each of the eight systems and screened for phenotypic changes. The qsrB mutants showed increased solvent formation during early solventogenesis and hence the QssB system was selected for further characterization. Overexpression of qsrB severely reduced solvent and endospore formation and this effect could be overcome by adding short synthetic peptides to the culture medium representing a specific region of the QspB signalling peptide precursor. In addition, overexpression of qspB increased the production of acetone and butanol and the initial (48 h) titre of heat-resistant endospores. Together, these findings establish a role for QssB quorum sensing in the regulation of early solventogenesis and sporulation in C. acetobutylicum.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridium acetobutylicum/fisiología , Percepción de Quorum , Esporas Bacterianas/crecimiento & desarrollo , Proteínas Bacterianas/genética , Composición de Base , Secuencia de Bases , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Familia de Multigenes , Análisis de Secuencia de ADN , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo
12.
Bioinformatics ; 35(18): 3397-3403, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30759197

RESUMEN

MOTIVATION: Genome scale metabolic models (GSMMs) are increasingly important for systems biology and metabolic engineering research as they are capable of simulating complex steady-state behaviour. Constraints based models of this form can include thousands of reactions and metabolites, with many crucial pathways that only become activated in specific simulation settings. However, despite their widespread use, power and the availability of tools to aid with the construction and analysis of large scale models, little methodology is suggested for their continued management. For example, when genome annotations are updated or new understanding regarding behaviour is discovered, models often need to be altered to reflect this. This is quickly becoming an issue for industrial systems and synthetic biotechnology applications, which require good quality reusable models integral to the design, build, test and learn cycle. RESULTS: As part of an ongoing effort to improve genome scale metabolic analysis, we have developed a test-driven development methodology for the continuous integration of validation data from different sources. Contributing to the open source technology based around COBRApy, we have developed the gsmodutils modelling framework placing an emphasis on test-driven design of models through defined test cases. Crucially, different conditions are configurable allowing users to examine how different designs or curation impact a wide range of system behaviours, minimizing error between model versions. AVAILABILITY AND IMPLEMENTATION: The software framework described within this paper is open source and freely available from http://github.com/SBRCNottingham/gsmodutils. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genoma , Modelos Biológicos , Ingeniería Metabólica , Programas Informáticos , Biología de Sistemas
13.
Environ Sci Technol ; 54(22): 14343-14351, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33125231

RESUMEN

Microbially-mediated methylation of arsenic (As) plays an important role in the As biogeochemical cycle, particularly in rice paddy soils where methylated As, generated microbially, is translocated into rice grains. The presence of the arsenite (As(III)) methyltransferase gene (arsM) in soil microbes has been used as an indication of their capacity for As methylation. Here, we evaluate the ability of seven microorganisms encoding active ArsM enzymes to methylate As. Amongst those, only the aerobic species were efficient methylators. The anaerobic microorganisms presented high resistance to As exposure, presumably through their efficient As(III) efflux, but methylated As poorly. The only exception were methanogens, for which efficient As methylation was seemingly an artifact of membrane disruption. Deletion of an efflux pump gene (acr3) in one of the anaerobes, Clostridium pasteurianum, rendered the strain sensitive to As and capable of more efficiently methylating As. Our results led to the following conclusions: (i) encoding a functional ArsM enzyme does not guarantee that a microorganism will actively drive As methylation in the presence of the metalloid and (ii) there is an inverse relationship between efficient microbial As efflux and its methylation, because the former prevents the intracellular accumulation of As.


Asunto(s)
Arsénico , Contaminantes del Suelo , Anaerobiosis , Clostridium , Metilación , Microbiología del Suelo
14.
J Math Biol ; 81(2): 649-690, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32761360

RESUMEN

We investigate how to characterize the kinetic parameters of an aminotransaminase using a non-standard coupled (or auxiliary) enzyme assay, where the peculiarity arises for two reasons. First, one of the products of the auxiliary enzyme is a substrate for the primary enzyme and, second, we explicitly account for the reversibility of the auxiliary enzyme reaction. Using singular perturbation theory, we characterize the two distinguished asymptotic limits in terms of the strength of the reverse reaction, which allows us to determine how to deduce the kinetic parameters of the primary enzyme for a characterized auxiliary enzyme. This establishes a parameter-estimation algorithm that is applicable more generally to similar reaction networks. We demonstrate the applicability of our theory by performing enzyme assays to characterize a novel putative aminotransaminase enzyme, CnAptA (UniProtKB Q0KEZ8) from Cupriavidus necator H16, for two different omega-amino acid substrates.


Asunto(s)
Pruebas de Enzimas , Modelos Biológicos , Algoritmos , Cupriavidus necator/enzimología , Cinética , Transaminasas/metabolismo
15.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076477

RESUMEN

Synthesis gas, which is mainly produced from fossil fuels or biomass gasification, consists of C1 gases such as carbon monoxide, carbon dioxide, and methane as well as hydrogen. Acetogenic bacteria (acetogens) have emerged as an alternative solution to recycle C1 gases by converting them into value-added biochemicals using the Wood-Ljungdahl pathway. Despite the advantage of utilizing acetogens as biocatalysts, it is difficult to develop industrial-scale bioprocesses because of their slow growth rates and low productivities. To solve these problems, conventional approaches to metabolic engineering have been applied; however, there are several limitations owing to the lack of required genetic bioparts for regulating their metabolic pathways. Recently, synthetic biology based on genetic parts, modules, and circuit design has been actively exploited to overcome the limitations in acetogen engineering. This review covers synthetic biology applications to design and build industrial platform acetogens.


Asunto(s)
Acetatos/metabolismo , Ingeniería Genética/métodos , Microbiología Industrial/métodos , Gas Natural/microbiología , Biodegradación Ambiental , Clostridium/genética , Clostridium/metabolismo , Biología Sintética/métodos
16.
Biotechnol Bioeng ; 116(6): 1475-1483, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30739328

RESUMEN

Clostridium beijerinckii is a potentially important industrial microorganism as it can synthesize valuable chemicals and fuels from various carbon sources. The establishment of convenient to use, effective gene tools with which the organism can be rapidly modified is essential if its full potential is to be realized. Here, we developed a genomic editing tool (pCBEclos) for use in C. beijerinckii based on the fusion of cytidine deaminase (Apobec1), Cas9 D10A nickase and uracil DNA glycosylase inhibitor (UGI). Apobec1 and UGI are guided to the target site where they introduce specific base-pair substitutions through the conversion of C·G to T·A. By appropriate choice of target sequence, these nucleotide changes are capable of creating missense mutation or null mutations in a gene. Through optimization of pCBEclos, the system derived, pCBEclos-opt, has been used to rapidly generate four different mutants in C. beijerinckii, in pyrE, xylR, spo0A, and araR. The efficiency of the system was such that they could sometimes be directly obtained following transformation, otherwise only requiring one single restreaking step. Whilst CRISPR-Cas9 nickase systems, such as pNICKclos2.0, have previously been reported in C. beijerinckii, pCBEclos-opt does not rely on homologous recombination, a process that is intrinsically inefficient in clostridia such as C. beijerinckii. As a consequence, bulky editing templates do not need to be included in the knockout plasmids. This both reduces plasmid size and makes their construction simpler, for example, whereas the assembly of pNICKclos2.0 requires six primers for the assembly of a typical knockout plasmid, pCBEclos-opt requires just two primers. The pCBEclos-opt plasmid established here represents a powerful new tool for genome editing in C. beijerinckii, which should be readily applicable to other clostridial species.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Clostridium beijerinckii/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Desoxirribonucleasa I/metabolismo , Edición Génica/métodos , Proteínas Recombinantes de Fusión/metabolismo , Desaminasas APOBEC-1/genética , Desaminasas APOBEC-1/metabolismo , Emparejamiento Base/genética , Proteína 9 Asociada a CRISPR/genética , ADN/genética , ADN/metabolismo , Desoxirribonucleasa I/genética , Vectores Genéticos , Plásmidos , Proteínas Recombinantes de Fusión/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
17.
Appl Microbiol Biotechnol ; 103(17): 7275-7286, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31346685

RESUMEN

Carbonic anhydrase catalyses the interconversion of carbon dioxide and water to bicarbonate and protons. It was unknown if the industrial-relevant acetogen Clostridium autoethanogenum possesses these enzymes. We identified two putative carbonic anhydrase genes in its genome, one of the ß class and one of the γ class. Carbonic anhydrase activity was found for the purified ß class enzyme, but not the γ class candidate. Functional complementation of an Escherichia coli carbonic anhydrase knock-out mutant showed that the ß class carbonic anhydrase could complement this activity, but not the γ class candidate gene. Phylogenetic analysis showed that the ß class carbonic anhydrase of Clostridium autoethanogenum represents a novel sub-class of ß class carbonic anhydrases that form the F-clade. The members of this clade have the shortest primary structure of any known carbonic anhydrase.


Asunto(s)
Proteínas Bacterianas/metabolismo , Anhidrasas Carbónicas/metabolismo , Clostridium/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/genética , Catálisis , Clostridium/clasificación , Clostridium/genética , Escherichia coli/genética , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Cinética , Peso Molecular , Filogenia , Multimerización de Proteína
18.
Appl Microbiol Biotechnol ; 103(11): 4633-4648, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30972463

RESUMEN

Clostridium autoethanogenum and Clostridium ljungdahlii are physiologically and genetically very similar strict anaerobic acetogens capable of growth on carbon monoxide as sole carbon source. While exact nutritional requirements have not been reported, we observed that for growth, the addition of vitamins to media already containing yeast extract was required, an indication that these are fastidious microorganisms. Elimination of complex components and individual vitamins from the medium revealed that the only organic compounds required for growth were pantothenate, biotin and thiamine. Analysis of the genome sequences revealed that three genes were missing from pantothenate and thiamine biosynthetic pathways, and five genes were absent from the pathway for biotin biosynthesis. Prototrophy in C. autoethanogenum and C. ljungdahlii for pantothenate was obtained by the introduction of plasmids carrying the heterologous gene clusters panBCD from Clostridium acetobutylicum, and for thiamine by the introduction of the thiC-purF operon from Clostridium ragsdalei. Integration of panBCD into the chromosome through allele-coupled exchange also conveyed prototrophy. C. autoethanogenum was converted to biotin prototrophy with gene sets bioBDF and bioHCA from Desulfotomaculum nigrificans strain CO-1-SRB, on plasmid and integrated in the chromosome. The genes could be used as auxotrophic selection markers in recombinant DNA technology. Additionally, transformation with a subset of the genes for pantothenate biosynthesis extended selection options with the pantothenate precursors pantolactone and/or beta-alanine. Similarly, growth was obtained with the biotin precursor pimelate combined with genes bioYDA from C. acetobutylicum. The work raises questions whether alternative steps exist in biotin and thiamine biosynthesis pathways in these acetogens.


Asunto(s)
Clostridium/crecimiento & desarrollo , Clostridium/metabolismo , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Vitaminas/biosíntesis , Clostridium/genética , Medios de Cultivo/química , Desulfotomaculum/genética , Expresión Génica , Genes Bacterianos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Anaerobe ; 59: 131-140, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31228669

RESUMEN

Commensal butyrate-producing bacteria in the Firmicutes phylum are abundant in the human intestine and are important for maintaining health. However, understanding of the metabolism and host interaction of these bacteria is limited by the lack of genetic modification techniques. Here we establish a protocol enabling the transfer of autonomously-replicating shuttle vectors by conjugative plasmid transfer from an Escherichia coli donor into representatives of an important sub-group of strictly anaerobic human colonic Firmicutes. Five different plasmid shuttle vectors were tested, each carrying a different origin of replication from Gram-positive bacteria. Plasmid pMTL83151 (pCB102 replicon) were successfully transferred into two strains of Eubacterium rectale, while pMTL83151 and pMTL82151 (pBP1 replicon) were transferred into Roseburia inulinivorans A2-194. Plasmids that carried a Streptococcus bovis JB1 glycoside hydrolase family 16 ß-(1,3-1,4)-glucanase gene were constructed and conjugated into Roseburia inulinivorans A2-194 and Eubacterium rectale T1-815, resulting in successful heterologous expression of this introduced enzymatic activity in these two strains of butyrate-producing Firmicutes.


Asunto(s)
Clostridiales/genética , Conjugación Genética , Eubacterium/genética , Expresión Génica , Técnicas de Transferencia de Gen , Genética Microbiana/métodos , Plásmidos , Escherichia coli/genética , Vectores Genéticos , Humanos , Transformación Bacteriana
20.
Anaerobe ; 59: 184-191, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31269456

RESUMEN

Clostridium encompasses species which are relevant to human and animal disease as well as species which have industrial potential, for instance, as producers of chemicals and fuels or as tumour delivery vehicles. Genetic manipulation of these target organisms is critical for advances in these fields. DNA transfer efficiencies, however, vary between species. Low efficiencies can impede the progress of research efforts. A novel conjugal donor strain of Escherichia coli has been created which exhibits a greater than 10-fold increases in conjugation efficiency compared to the traditionally used CA434 strain in the three species tested; C. autoethanogenum DSM 10061, C. sporogenes NCIMB 10696 and C. difficile R20291. The novel strain, designated 'sExpress', does not methylate DNA at Dcm sites (CCWGG) which allows circumvention of cytosine-specific Type IV restriction systems. A robust protocol for conjugation is presented which routinely produces in the order of 105 transconjugants per millilitre of donor cells for C. autoethanogenum, 106 for C. sporogenes and 102 for C. difficile R20291. The novel strain created is predicted to be a superior conjugal donor in a wide range of species which possess Type IV restriction systems.


Asunto(s)
Clostridium/genética , Conjugación Genética , Escherichia coli/genética , Técnicas de Transferencia de Gen , Genética Microbiana/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA