Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
EMBO Rep ; 24(12): e57585, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37965896

RESUMEN

Faithful DNA replication requires specific proteins that protect replication forks and so prevent the formation of DNA lesions that may damage the genome. Identification of new proteins involved in this process is essential to understand how DNA lesions accumulate in cancer cells and how they tolerate them. Here, we show that human GNL3/nucleostemin, a GTP-binding protein localized mostly in the nucleolus and highly expressed in cancer cells, prevents nuclease-dependent resection of nascent DNA in response to replication stress. We demonstrate that inhibiting origin firing reduces resection. This suggests that the heightened replication origin activation observed upon GNL3 depletion largely drives the observed DNA resection probably due to the exhaustion of the available RPA pool. We show that GNL3 and DNA replication initiation factor ORC2 interact in the nucleolus and that the concentration of GNL3 in the nucleolus is required to limit DNA resection. We propose that the control of origin firing by GNL3 through the sequestration of ORC2 in the nucleolus is critical to prevent nascent DNA resection in response to replication stress.


Asunto(s)
Replicación del ADN , Proteínas de Unión al GTP , Humanos , Proteínas de Unión al GTP/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Daño del ADN , ADN
2.
BMC Cancer ; 24(1): 417, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575987

RESUMEN

Lung cancer is one of the most common type of cancer and, despite significant advances in screening and diagnosis approaches, a large proportion of patients at diagnosis still present advanced stages of the disease with distant metastasis and bad prognosis. Finding and validating biomarkers of lung cancer is therefore essential. Such studies are often conducted on European, American and Asian populations and the relevance of these biomarkers in other populations remains less clear. In that prospect, we investigated the expression level of seven microRNAs, chosen from the medical literature (miR-16-5p, miR-92a-3p, miR-103a-3p, miR-375-3p, miR-451a, miR-520-3p and miR-let-7e-5p), in the blood of Tunisian lung cancer patients, treated or not by chemotherapy, and healthy control individuals. We found that high expression levels of circulating miR-16-5p, miR-92a-3p and miR-451a in the plasma of untreated patients discriminate them from healthy control individuals. In addition, miR-16-5p and miR-451a expression levels are significantly reduced in the plasma of chemotherapy-treated patients compared to untreated patients. Our results confirmed previous work in other populations worldwide and provide further evidence that circulating miR-16-5p, miR-92a-3p and miR-451a potentially regulate key pathways involved in the initiation and progression of cancer.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Humanos , Neoplasias Pulmonares/genética , MicroARNs/metabolismo , Biomarcadores , Biomarcadores de Tumor/genética
3.
Nucleic Acids Res ; 50(10): 5545-5564, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35609998

RESUMEN

The aryl hydrocarbon receptor (AHR) regulates the expression of numerous genes in response to activation by agonists including xenobiotics. Although it is well appreciated that environmental signals and cell intrinsic features may modulate this transcriptional response, how it is mechanistically achieved remains poorly understood. We show that hexokinase 2 (HK2) a metabolic enzyme fuelling cancer cell growth, is a transcriptional target of AHR as well as a modulator of its activity. Expression of HK2 is positively regulated by AHR upon exposure to agonists both in human cells and in mice lung tissues. Conversely, over-expression of HK2 regulates the abundance of many proteins involved in the regulation of AHR signalling and these changes are linked with altered AHR expression levels and transcriptional activity. HK2 expression also shows a negative correlation with AHR promoter methylation in tumours, and these tumours with high HK2 expression and low AHR methylation are associated with a worse overall survival in patients. In sum, our study provides novel insights into how AHR signalling is regulated which may help our understanding of the context-specific effects of this pathway and may have implications in cancer.


Asunto(s)
Hexoquinasa , Receptores de Hidrocarburo de Aril , Animales , Hexoquinasa/genética , Hexoquinasa/metabolismo , Hexoquinasa/farmacología , Humanos , Ratones , Regiones Promotoras Genéticas , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal , Xenobióticos
4.
Bioessays ; 42(3): e1900129, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31967345

RESUMEN

Ubiquitination plays a central role in the regulation of stem cell self-renewal, propagation, and differentiation. In this review, the functions of ubiquitin dynamics in a myriad of cellular processes, acting along side the pluripotency network, to regulate embryonic stem cell identity are highlighted. The implication of deubiquitinases (DUBs) and E3 Ubiquitin (Ub) ligases in cellular functions beyond protein degradation is reported, including key functions in the regulation of mRNA stability, protein translation, and intra-cellular trafficking; and how it affects cell metabolism, the micro-environment, and chromatin organization is discussed. Finally, unsolved issues in the field are emphasized and will need to be tackled in order to fully understand the contribution of ubiquitin dynamics to stem cell self-renewal and differentiation.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ubiquitina/metabolismo , Ubiquitinación/genética , Animales , Diferenciación Celular/genética , Autorrenovación de las Células/genética , Enzimas Desubicuitinizantes/metabolismo , Expresión Génica , Humanos , Unión Proteica , Biosíntesis de Proteínas/genética , Transporte de Proteínas/genética , Proteolisis , ARN Mensajero/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
5.
Environ Res ; 195: 110317, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33069705

RESUMEN

The role of environmental condition on the infection by the novel pathogenic SARS-CoV-2 virus remains uncertain. In here, exploiting a large panel of publicly available genome-wide data, we investigated whether the human receptor ACE2 and human proteases TMPRSS2, FURIN and CATHEPSINs (B, L and V), which are involved in SARS-CoV-2 cell entry, are transcriptionally regulated by environmental cues. We report that more than 50 chemicals modulate the expression of ACE2 or human proteases important for SARS-CoV-2 cell entry. We further demonstrate that transcription factor AhR, which is commonly activated by pollutants, binds to the promoter of TMPRSS2 and enhancers and/or promoters of Cathepsin B, L and V encoding genes. Our exploratory study documents an influence of environmental exposures on the expression of genes involved in SARS-CoV-2 cell entry. These results could be conceptually and medically relevant to our understanding of the COVID-19 disease, and should be further explored in laboratory and epidemiologic studies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Exposición a Riesgos Ambientales , Humanos , Péptido Hidrolasas , Internalización del Virus
6.
Nucleic Acids Res ; 46(9): 4392-4404, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29490077

RESUMEN

Reactive oxygen species (ROS) are a byproduct of cell metabolism, and can also arise from environmental sources, such as toxins or radiation. Depending on dose and context, ROS have both beneficial and deleterious roles in mammalian development and disease, therefore it is crucial to understand how these molecules are generated, sensed, and detoxified. The question of how oxidative stress connects to the epigenome, in particular, is important yet incompletely understood. Here we show that an epigenetic regulator, the methyl-CpG-binding protein ZBTB38, limits the basal cellular production of ROS, is induced by ROS, and is required to mount a proper response to oxidative stress. Molecularly, these functions depend on a deubiquitinase, USP9X, which interacts with ZBTB38, deubiquitinates it, and stabilizes it. We find that USP9X is itself stabilized by oxidative stress, and is required together with ZBTB38 to limit the basal generation of ROS, as well as the toxicity of an acute oxidative stress. Our data uncover a new nuclear target of USP9X, show that the USP9X/ZBTB38 axis limits, senses and detoxifies ROS, and provide a molecular link between oxidative stress and the epigenome.


Asunto(s)
Estrés Oxidativo , Proteínas Represoras/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Línea Celular Tumoral , Núcleo Celular/enzimología , Núcleo Celular/metabolismo , Humanos , Estabilidad Proteica , Especies Reactivas de Oxígeno/metabolismo
7.
Mol Cell ; 44(1): 62-71, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21856198

RESUMEN

In response to environmental stresses, cells activate stress-response genes and inhibit DNA replication. HBO1 histone acetylase is a coactivator both for AP-1 transcription factors responding to stress-activated JNK kinases and also for the Cdt1 licensing factor that ensures that DNA is replicated exactly once per cell cycle. In response to nongenotoxic stress, JNK phosphorylates Jun, an AP-1 transcription factor, leading to increased recruitment of HBO1 and increased transcription of target genes. In addition, JNK phosphorylates Cdt1 on threonine 29, leading to rapid dissociation of HBO1 from replication origins, thereby blocking initiation of DNA replication. Upon relief of stress, HBO1 reassociates with replication origins. Thus, regulated and reciprocal recruitment of the HBO1 coactivator to target genes and replication origins via JNK-mediated phosphorylation of the recruiting transcription and replication licensing factors coordinates the transcriptional and DNA replication response to cellular stress.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Histona Acetiltransferasas/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Ciclo Celular , Replicación del ADN , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Estrés Oxidativo , Fosforilación , ARN Interferente Pequeño/metabolismo , Treonina/química , Treonina/metabolismo , Factor de Transcripción AP-1/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(33): E4810-9, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27436900

RESUMEN

The origin recognition complex (ORC) binds sites from which DNA replication is initiated. We address ORC binding selectivity in vivo by mapping ∼52,000 ORC2 binding sites throughout the human genome. The ORC binding profile is broader than those of sequence-specific transcription factors, suggesting that ORC is not bound or recruited to specific DNA sequences. Instead, ORC binds nonspecifically to open (DNase I-hypersensitive) regions containing active chromatin marks such as H3 acetylation and H3K4 methylation. ORC sites in early and late replicating regions have similar properties, but there are far more ORC sites in early replicating regions. This suggests that replication timing is due primarily to ORC density and stochastic firing of origins. Computational simulation of stochastic firing from identified ORC sites is in accord with replication timing data. Large genomic regions with a paucity of ORC sites are strongly associated with common fragile sites and recurrent deletions in cancers. We suggest that replication origins, replication timing, and replication-dependent chromosome breaks are determined primarily by the genomic distribution of activator proteins at enhancers and promoters. These activators recruit nucleosome-modifying complexes to create the appropriate chromatin structure that allows ORC binding and subsequent origin firing.


Asunto(s)
Sitios Frágiles del Cromosoma , Replicación del ADN , Neoplasias/genética , Complejo de Reconocimiento del Origen/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Simulación por Computador , Humanos , Células K562 , Modelos Logísticos , Complejo de Reconocimiento del Origen/química , Origen de Réplica , Factores de Tiempo
9.
Mol Cell ; 37(1): 57-66, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20129055

RESUMEN

HBO1, an H4-specific histone acetylase, is a coactivator of the DNA replication licensing factor Cdt1. HBO1 acetylase activity is required for licensing, because a histone acetylase (HAT)-defective mutant of HBO1 bound at origins is unable to load the MCM complex. H4 acetylation at origins is cell-cycle regulated, with maximal activity at the G1/S transition, and coexpression of HBO1 and Jade-1 increases histone acetylation and MCM complex loading. Overexpression of the Set8 histone H4 tail-binding domain specifically inhibits MCM loading, suggesting that histones are a physiologically relevant target for licensing. Lastly, Geminin inhibits HBO1 acetylase activity in the context of a Cdt1-HBO1 complex, and it associates with origins and inhibits H4 acetylation and licensing in vivo. Thus, H4 acetylation at origins by HBO1 is critical for replication licensing by Cdt1, and negative regulation of licensing by Geminin is likely to involve inhibition of HBO1 histone acetylase activity.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Replicación del ADN , Histona Acetiltransferasas/fisiología , Histonas/metabolismo , Acetilación , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Geminina , Histona Acetiltransferasas/antagonistas & inhibidores , Histona Acetiltransferasas/metabolismo , Humanos
10.
Biochim Biophys Acta ; 1863(4): 673-85, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26732297

RESUMEN

NF-Y is a heterotrimeric transcription factor, which plays a pioneer role in the transcriptional control of promoters containing the CCAAT-box, among which genes involved in cell cycle regulation, apoptosis and DNA damage response. The knock-down of the sequence-specific subunit NF-YA triggers defects in S-phase progression, which lead to apoptotic cell death. Here, we report that NF-Y has a critical function in DNA replication progression, independent from its transcriptional activity. NF-YA colocalizes with early DNA replication factories, its depletion affects the loading of replisome proteins to DNA, among which Cdc45, and delays the passage from early to middle-late S phase. Molecular combing experiments are consistent with a role for NF-Y in the control of fork progression. Finally, we unambiguously demonstrate a direct non-transcriptional role of NF-Y in the overall efficiency of DNA replication, specifically in the DNA elongation process, using a Xenopus cell-free system. Our findings broaden the activity of NF-Y on a DNA metabolism other than transcription, supporting the existence of specific TFs required for proper and efficient DNA replication.


Asunto(s)
Factor de Unión a CCAAT/fisiología , Replicación del ADN/genética , Animales , Factor de Unión a CCAAT/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , ADN/metabolismo , Células HCT116 , Humanos , Regiones Promotoras Genéticas , Fase S/genética , Elongación de la Transcripción Genética , Transcripción Genética , Xenopus laevis
11.
J Cell Physiol ; 230(4): 743-51, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25283539

RESUMEN

DNA methylation in mammals is a key epigenetic modification essential to normal genome regulation and development. DNA methylation patterns are established during early embryonic development, and subsequently maintained during cell divisions. Yet, discrete site-specific de novo DNA methylation or DNA demethylation events play a fundamental role in a number of physiological and pathological contexts, leading to critical changes in the transcriptional status of genes such as differentiation, tumor suppressor or imprinted genes. How the DNA methylation machinery targets specific regions of the genome during early embryogenesis and in adult tissues remains poorly understood. Here, we report advances being made in the field with a particular emphasis on the implication of transcription factors in establishing and in editing DNA methylation profiles.


Asunto(s)
Metilación de ADN/genética , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Humanos , Factores de Transcripción/genética
12.
Nat Commun ; 15(1): 3016, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589367

RESUMEN

Myelodysplastic syndromes (MDS) with mutated SF3B1 gene present features including a favourable outcome distinct from MDS with mutations in other splicing factor genes SRSF2 or U2AF1. Molecular bases of these divergences are poorly understood. Here we find that SF3B1-mutated MDS show reduced R-loop formation predominating in gene bodies associated with intron retention reduction, not found in U2AF1- or SRSF2-mutated MDS. Compared to erythroblasts from SRSF2- or U2AF1-mutated patients, SF3B1-mutated erythroblasts exhibit augmented DNA synthesis, accelerated replication forks, and single-stranded DNA exposure upon differentiation. Importantly, histone deacetylase inhibition using vorinostat restores R-loop formation, slows down DNA replication forks and improves SF3B1-mutated erythroblast differentiation. In conclusion, loss of R-loops with associated DNA replication stress represents a hallmark of SF3B1-mutated MDS ineffective erythropoiesis, which could be used as a therapeutic target.


Asunto(s)
Síndromes Mielodisplásicos , Estructuras R-Loop , Humanos , Factor de Empalme U2AF/genética , Factores de Empalme Serina-Arginina/genética , Factores de Empalme de ARN/genética , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Mutación , Factores de Transcripción/genética , Fosfoproteínas/genética
13.
Bioessays ; 32(9): 800-7, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20730947

RESUMEN

Hox proteins are well-known as developmental transcription factors controlling cell and tissue identity, but recent findings suggest that they are also part of the cell replication machinery. Hox-mediated control of transcription and replication may ensure coordinated control of cell growth and differentiation, two processes that need to be tightly and precisely coordinated to allow proper organ formation and patterning. In this review we summarize the available data linking Hox proteins to the replication machinery and discuss the developmental and pathological implications of this new facet of Hox protein function.


Asunto(s)
Replicación del ADN , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Animales , Ciclo Celular/genética , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Ratones , Factores de Transcripción/genética
14.
Bioessays ; 32(12): 1025-32, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20886526

RESUMEN

CpG islands (CGIs) are regions enriched in the dinucleotide CpG; they constitute the promoter of about 60% of mammalian genes. In cancer cells, some promoter-associated CGIs become heavily methylated on cytosines, and the corresponding genes undergo stable transcriptional silencing. Hypermethylated CGIs attract methyl-CpG-binding proteins (MBPs), which have been shown to recruit chromatin modifiers and cause transcriptional repression. These observations have led to the prevalent model that methyl-CpG-binding proteins are promoter-proximal transcriptional repressors. Recent discoveries challenge this idea and raise a number of questions. Here we discuss the following issues: what are other possible roles for the known MBPs? Why are these proteins not essential in mammals? Are there other MBPs left to discover? Could CpG methylation be nonessential?


Asunto(s)
Islas de CpG , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Silenciador del Gen , Proteína 2 de Unión a Metil-CpG/metabolismo , Regiones Promotoras Genéticas , Animales , Ensamble y Desensamble de Cromatina , Citosina , Proteínas de Unión al ADN/genética , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Elementos Silenciadores Transcripcionales , Transcripción Genética
15.
Epigenetics ; 17(13): 2122-2143, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36000449

RESUMEN

DNA methylation on CpGs regulates transcription in mammals, both by decreasing the binding of methylation-repelled factors and by increasing the binding of methylation-attracted factors. Among the latter, zinc finger proteins have the potential to bind methylated CpGs in a sequence-specific context. The protein ZBTB38 is unique in that it has two independent sets of zinc fingers, which recognize two different methylated consensus sequences in vitro. Here, we identify the binding sites of ZBTB38 in a human cell line, and show that they contain the two methylated consensus sequences identified in vitro. In addition, we show that the distribution of ZBTB38 sites is highly unusual: while 10% of the ZBTB38 sites are also bound by CTCF, the other 90% of sites reside in closed chromatin and are not bound by any of the other factors mapped in our model cell line. Finally, a third of ZBTB38 sites are found upstream of long and active CpG islands. Our work therefore validates ZBTB38 as a methyl-DNA binder in vivo and identifies its unique distribution in the genome.


Asunto(s)
Metilación de ADN , Factores de Transcripción , Animales , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Islas de CpG , Dedos de Zinc , Regulación de la Expresión Génica , Sitios de Unión , Unión Proteica , Mamíferos/genética , Mamíferos/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
16.
Epigenetics ; 17(4): 422-443, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33960278

RESUMEN

Ten-Eleven Translocation (TET) proteins convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) leading to a dynamic epigenetic state of DNA that can influence transcription and chromatin organization. While TET proteins interact with complexes involved in transcriptional repression and activation, the overall understanding of the molecular mechanisms involved in TET-mediated regulation of gene expression still remains limited. Here, we show that TET proteins interact with the chromatin remodelling protein lymphoid-specific helicase (LSH/HELLS) in vivo and in vitro. In mouse embryonic fibroblasts (MEFs) and embryonic stem cells (ESCs) knock out of Lsh leads to a significant reduction of 5-hydroxymethylation amount in the DNA. Whole genome sequencing of 5hmC in wild-type versus Lsh knock-out MEFs and ESCs showed that in absence of Lsh, some regions of the genome gain 5hmC while others lose it, with mild correlation with gene expression changes. We further show that differentially hydroxymethylated regions did not completely overlap with differentially methylated regions indicating that changes in 5hmC distribution upon Lsh knock-out are not a direct consequence of 5mC decrease. Altogether, our results suggest that LSH, which interacts with TET proteins, contributes to the regulation of 5hmC levels and distribution in MEFs and ESCs.


Asunto(s)
Ensamble y Desensamble de Cromatina , Metilación de ADN , 5-Metilcitosina/metabolismo , Animales , Citosina/metabolismo , ADN/metabolismo , ADN Helicasas/metabolismo , Fibroblastos/metabolismo , Genoma , Ratones
17.
Commun Biol ; 4(1): 127, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514811

RESUMEN

Common fragile sites (CFSs) are genomic regions frequently involved in cancer-associated rearrangements. Most CFSs lie within large genes, and their instability involves transcription- and replication-dependent mechanisms. Here, we uncover a role for the mitochondrial stress response pathway in the regulation of CFS stability in human cells. We show that FANCD2, a master regulator of CFS stability, dampens the activation of the mitochondrial stress response and prevents mitochondrial dysfunction. Genetic or pharmacological activation of mitochondrial stress signaling induces CFS gene expression and concomitant relocalization to CFSs of FANCD2. FANCD2 attenuates CFS gene transcription and promotes CFS gene stability. Mechanistically, we demonstrate that the mitochondrial stress-dependent induction of CFS genes is mediated by ubiquitin-like protein 5 (UBL5), and that a UBL5-FANCD2 dependent axis regulates the mitochondrial UPR in human cells. We propose that FANCD2 coordinates nuclear and mitochondrial activities to prevent genome instability.


Asunto(s)
Sitios Frágiles del Cromosoma , Fragilidad Cromosómica , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Mitocondrias/genética , Estrés Fisiológico , Daño del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Regulación de la Expresión Génica , Células HCT116 , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Fosforilación Oxidativa , Transcripción Genética , Ubiquitinas/genética , Ubiquitinas/metabolismo , Respuesta de Proteína Desplegada
18.
Cancers (Basel) ; 12(5)2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365491

RESUMEN

Prostate cancer is one of the most commonly diagnosed cancers in men. A number of genomic and clinical studies have led to a better understanding of prostate cancer biology. Still, the care of patients as well as the prediction of disease aggressiveness, recurrence and outcome remain challenging. Here, we showed that expression of the gene ZBTB38 is associated with poor prognosis in localised prostate cancer and could help discriminate aggressive localised prostate tumours from those who can benefit only from observation. Analysis of different prostate cancer cohorts indicates that low expression levels of ZBTB38 associate with increased levels of chromosomal abnormalities and more aggressive pathological features, including higher rate of biochemical recurrence of the disease. Importantly, gene expression profiling of these tumours, complemented with cellular assays on prostate cancer cell lines, unveiled that tumours with low levels of ZBTB38 expression might be targeted by doxorubicin, a compound generating reactive oxygen species. Our study shows that ZBTB38 is involved in prostate cancer pathogenesis and may represent a useful marker to identify high risk and highly rearranged localised prostate cancer susceptible to doxorubicin.

19.
Mol Cell Biol ; 26(16): 5969-82, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16880509

RESUMEN

bZIP DNA-binding domains are targets for viral and cellular proteins that function as transcriptional coactivators. Here, we show that MBF1 and the related Chameau and HBO1 histone acetylases interact with distinct subgroups of bZIP proteins, whereas pX does not discriminate. Selectivity of Chameau and MBF1 for bZIP proteins is mediated by residues in the basic region that lie on the opposite surface from residues that contact DNA. Chameau functions as a specific coactivator for the AP-1 class of bZIP proteins via two arginine residues. A conserved glutamic acid/glutamine in the linker region underlies MBF1 specificity for a subgroup of bZIP factors. Chameau and MBF1 cannot synergistically coactivate transcription due to competitive interactions with the basic region, but either protein can synergistically coactivate with pX. Analysis of Jun derivatives that selectively interact with these coactivators reveals that MBF1 is crucial for the response to oxidative stress, whereas Chameau is important for the response to chemical and osmotic stress. Thus, the bZIP domain mediates selective interactions with coactivators and hence differential regulation of gene expression.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , ADN/metabolismo , Regulación de la Expresión Génica , Transactivadores/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Animales , Arginina/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas de Unión a Calmodulina/metabolismo , Secuencia Conservada/genética , Productos del Gen tax/metabolismo , Células HeLa , Histona Acetiltransferasas/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Estrés Oxidativo , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato
20.
Epigenet Insights ; 11: 2516865718811117, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30480223

RESUMEN

DNA methylation plays an essential role in the control of gene expression during early stages of development as well as in disease. Although many transcription factors are sensitive to this modification of the DNA, we still do not clearly understand how it contributes to the establishment of proper gene expression patterns. We discuss here the recent findings regarding the biological and molecular function(s) of the transcription factor ZBTB38 that binds methylated DNA sequences in vitro and in cells. We speculate how these findings may help understand the role of DNA methylation and DNA methylation-sensitive transcription factors in mammalian cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA