Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Geochem Health ; 44(12): 4405-4422, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35089477

RESUMEN

Mercury (Hg) is extremely poisonous and can be absorbed through touch, inhalation, or consumption. In the living environment, Hg in contaminated sediment can be transferred into grass by the direct absorption through the roots or shoots. The intake of Hg due to Hg emissions may pose a threat to living bodies especially to human beings. The present study aims to provide a novel insight about total mercury (THg) and methyl mercury (MeHg) in a riparian grass (Cynodon dactylon (L).Pers) and sediments during the discharging phase (summertime at 145 m water level) in Three Gorges Reservoir (TGR-China); where C. dactylon is a dominant perennial herb in the riparian zone. Yet, the potential risk of Hg contamination in the riparian ecosystem is not thoroughly assessed in the dam regulated reservoir. This study was conducted in the riparian zones of the reservoir formed by a mega dam (Three Gorge Dam) which regulates the water levels during the summer and winter period in the TGR. Our results showed that riparian sediments were acting as a sink for THg and MeHg. Insignificant correlation of THg and MeHg was found between the amphiphyte C. dactylon and its surrounding sediments in the TGR. Bioconcentration factors values for MeHg were found higher than 1 in all study locations in the riparian zones in TGR, which could be due to action of certain bacteria/purely chemical-based methylation on inorganic form of Hg. Additionally, translocation factor indices also highlighted that the amphiphyte C. dactylon was MeHg accumulator in riparian zones. These results suggested that since riparian sediment was found acting as the sink for THg and MeHg during discharging phase, MeHg contamination in the amphiphyte C. dactylon in riparian zones was not caused by the riparian sediments but by other factors, for instance, the anthropogenic activities in the TGR. Finally, this study leads to conclude that amphiphyte C. dactylon can be used as biomonitoring agent for Hg pollution in the TGR.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Humanos , Mercurio/análisis , Ecosistema , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Agua
2.
Sci Total Environ ; 802: 149886, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34525683

RESUMEN

Hydropower dam constructions and operations have dramatically changed the original hydrological regime of natural rivers. Because of significantly slashed and suspended sediments blocked by damming, discharged "clear" water was found to play a strong undercutting effect on the riverbank and to exacerbate riparian soil erosion on the downstream near dams. Yet, it is still an unsettled issue whether the instability of riparian soil structure would be simply correlated negatively with the distance to a dam. In this study, soils along the downstream riparian zone of a huge dam on the River Yangtze, China, were sampled to examine the distance effect on the riparian soil structural stability. Water-stable aggregates were fractionated by the wet-sieving method. Mean weight diameter (MWD) and geometric mean diameter (GMD) were used to indicate riparian soil stability. Further, the fractal dimension (D) and soil erodibility parameter (K) were used to represent the likelihood of riparian erosion. Our results revealed that riparian soil structural stability demonstrated a high spatial heterogeneity along the River Yangtze, and was less affected by the spatial distance to the dam. Rather, the soil stability was primarily influenced by a river shape index (sinuosity) and local edaphic properties. The river sinuosity index demonstrated a positive relationship with soil structural stability. Additionally, soil organic matter was found as a major edaphic factor in stabilizing soil structure. The results indicated that river sinuosity plays a crucial role in stabilizing soil by accumulating soil organic matters. Our findings implied that the potential negative impact of damming effect on soil stability may be attenuated by maintaining a higher sinuosity of the river. Against the risk of riparian soil erosion along the dammed river, the configuration of river morphology shall be considered as one of the potential managements in offsetting the negative impacts of damming.


Asunto(s)
Ríos , Suelo , China , Hidrología
3.
Environ Sci Pollut Res Int ; 27(29): 37099-37113, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32577982

RESUMEN

Throughout continents, reservoirs tend to have elevated methylmercury (MeHg) concentration transformed from mercury (Hg/total Hg). This impact may be pronounced in the reservoir with less velocity of water during the charging period resulted in the deposition of sediments. In sediments on favorable conditions, methylation may be enhanced by the decomposition of flood organic material, which can release Hg and enhance microbial activity. However, much less is known about the transfer ratio of Hg and its form MeHg from sediment to biota in the hydrological reservoir during the dam charging phase. The objective of our study was to understand the interrelationship between total Hg and MeHg in two key components sediment and fish in the reservoir ecosystem. This study was performed at the Three Gorges Reservoir (TGR) located on upstream of the Yangtze River in China. At the TGR charging phase, during winter time, the water level was high due to blockade of water by Three Gorges Dam (TGD). Sediment and fish samples were collected in winter season for total Hg, MeHg, and several ancillary parameters. The results showed that total Hg in sediment samples of the winter season were ranged from 6.2 ± 0.001 to 193.3 ± 0.001 × 10-3 mg/kg, with an average value of 53.76 ± 51.80 × 10-3 mg/kg, and for MeHg was ranged from 12.1 ± 0.04 to 348.7 ± 0.16 × 10-2 ng/g, with an average value of 98.96 ± 93.07 × 10-2 ng/g. Total Hg and MeHg in fish samples of the winter season were from 42.48 ± 6.71 to 166 ± 52.56 ng/g, with an average value of 76.22 ± 31.23 ng/g, and from 21.09 ± 2.31 to 61.60 ± 13.30 ng/g, with an average value of 37.89 ± 11.96 ng/g. The relationship of total Hg and MeHg concentrations in fish to those of sediments from corresponding sites showed a negative relationship. This might include a strong association of total Hg with an inorganic component of sediment (e.g., bound to sulfides or coprecipitated with other metal oxides such as manganese and iron). The average concentration of fish MeHg found in this study, at rates greater than 1.72 g/day, was estimated hazardous to human health. This study concludes sediment was acting as sequestrate for total Hg and MeHg in TGR. The bioaccumulation of total Hg and MeHg in fish was not controlled by sediment further investigation about pathological routes and dietary habits of fish needed to be identified for total Hg and MeHg study in TGR.


Asunto(s)
Mercurio/análisis , Compuestos de Metilmercurio , Contaminantes Químicos del Agua/análisis , Animales , China , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos
4.
J Biosci ; 32(2): 351-61, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17435326

RESUMEN

We tested a mechanical model of wing,which was constructed using the measurements of wingspan and wing area taken from three species of gliding birds.In this model,we estimated the taper factors of the wings for jackdaw (Corrus monedula), Harris' hawk (Parabuteo unicinctas) and Lagger falcon (Falco jugger) as 1.8, 1.5 and 1.8,respectively. Likewise, by using the data linear regression and curve estimation method,as well as estimating the taper factors and the angle between the humerus and the body, we calculated the relationship between wingspan,wing area and the speed necessary to meet the aerodynamic requirements of sustained flight.In addition,we calculated the relationship between the speed,wing area and wingspan for a specific angle between the humerus and the body over the range of stall speed to maximum speed of gliding flight.We then compared the results for these three species of gliding birds. These comparisons suggest that the aerodynamic characteristics of Harris' hawk wings are similar to those of the falcon but different from those of the jackdaw.This paper also presents two simple equations to estimate the minimum angle between the humerus and the body as well as the minimum span ratio of a bird in gliding flight.


Asunto(s)
Cuervos/fisiología , Falconiformes/fisiología , Vuelo Animal/fisiología , Modelos Anatómicos , Modelos Teóricos , Alas de Animales/fisiología , Animales , Modelos Lineales , Alas de Animales/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA