Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35336301

RESUMEN

Samples from various winemaking stages of the production of sparkling wines using different grape varieties were characterized based on the profile of biogenic amines (BAs) and the elemental composition. Liquid chromatography with fluorescence detection (HPLC-FLD) combined with precolumn derivatization with dansyl chloride was used to quantify BAs, while inductively coupled plasma (ICP) techniques were applied to determine a wide range of elements. Musts, base wines, and sparkling wines were analyzed accordingly, and the resulting data were subjected to further chemometric studies to try to extract information on oenological practices, product quality, and varieties. Although good descriptive models were obtained when considering each type of data separately, the performance of data fusion approaches was assessed as well. In this regard, low-level and mid-level approaches were evaluated, and from the results, it was concluded that more comprehensive models can be obtained when joining data of different natures.


Asunto(s)
Vitis , Vino , Aminas Biogénicas/análisis , Cromatografía Líquida de Alta Presión/métodos , Vitis/química , Vino/análisis
2.
Molecules ; 27(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36557822

RESUMEN

Biogenic amines (BAs) occur in a wide variety of foodstuffs, mainly from the decomposition of proteins by the action of microorganisms. They are involved in several cellular functions but may become toxic when ingested in high amounts through the diet. In the case of oenological products, BAs are already present in low concentrations in must, and their levels rise dramatically during the fermentation processes. This paper proposes a rapid method for the determination of BAs in wines and related samples based on precolumn derivatization with dansyl chloride and further detection by flow injection analysis with tandem mass spectrometry. Some remarkable analytes such as putrescine, ethanolamine, histamine, and tyramine have been quantified in the samples. Concentrations obtained have shown interesting patterns, pointing out the role of BAs as quality descriptors. Furthermore, it has been found that the BA content also depends on the vinification practices, with malolactic fermentation being a significant step in the formation of BAs. From the point of view of health, concentrations found in the samples are, in general, below 10 mg L-1, so the consumption of these products does not represent any special concern. In conclusion, the proposed method results in a suitable approach for a fast screening of this family of bioactive compounds in wines to evaluate quality and health issues.


Asunto(s)
Vino , Vino/análisis , Espectrometría de Masas en Tándem , Análisis de Inyección de Flujo , Aminas Biogénicas/análisis , Histamina/análisis , Cromatografía Líquida de Alta Presión/métodos
3.
Food Chem ; 456: 140042, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38876070

RESUMEN

Waste from the olive industry is a noticeable source of antioxidant compounds that can be extracted and reused to produce raw materials related to the chemical, cosmetic, food and pharmaceutical sectors. This work studies the phenolic composition of olive leaf samples using liquid chromatography with ultraviolet detection coupled to mass spectrometry (LC-UV-MS). Olive leaf waste samples have been crushed, homogenized, and subjected to a solid-liquid extraction treatment with mechanical shaking at 80 °C for 2 h using Natural Deep Eutectic Solvents (NaDES). The phenolic compound identification in the resulting extracts has been carried out by high-resolution mass spectrometry (HRMS) using data-dependent acquisition mode using an Orbitrap HRMS instrument. >60 different phenolic compounds have been annotated tentatively, of which about 20 have been confirmed from the corresponding standards. Some of the most noticeable compounds are oleuropein and its aglycone and glucoside form, luteolin-7-O-glucoside, 3-hydroxytyrosol, and verbascoside.


Asunto(s)
Olea , Fenoles , Extractos Vegetales , Hojas de la Planta , Olea/química , Hojas de la Planta/química , Fenoles/química , Fenoles/análisis , Extractos Vegetales/química , Espectrometría de Masas , Cromatografía Líquida de Alta Presión
4.
Antioxidants (Basel) ; 12(5)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37237861

RESUMEN

Agri-food industries generate a large amount of waste that offers great revalorization opportunities within the circular economy framework. In recent years, new methodologies for the extraction of compounds with more eco-friendly solvents have been developed, such as the case of natural deep eutectic solvents (NADES). In this study, a methodology for extracting phenolic compounds from olive tree leaves using NADES has been optimized. The conditions established as the optimal rely on a solvent composed of choline chloride and glycerol at a molar ratio of 1:5 with 30% water. The extraction was carried out at 80 °C for 2 h with constant agitation. The extracts obtained have been analyzed by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) in MRM mode. The comparison with conventional ethanol/water extraction has shown that NADES, a more environmentally friendly alternative, has improved extraction efficiency. The main polyphenols identified in the NADES extract were Luteolin-7-O-glucoside, Oleuropein, 3-Hydroxytyrosol, Rutin, and Luteolin at the concentrations of 262, 173, 129, 34, and 29 mg kg-1 fresh weight, respectively.

5.
Sci Total Environ ; 857(Pt 3): 159623, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36283524

RESUMEN

Winery wastes are rich in polyphenols with high added value to be used in cosmetics, pharmaceuticals, and food products. This work aims at recovering and purifying the polyphenolic fraction occurring in the malolactic fermentation lees generated during the production of Albariño wines. Phenolic acids, flavonoids, and related compounds were recovered from this oenological waste by green liquid extraction using water as the solvent. The resulting extract solution was microfiltered to remove microparticles and further treated by ultrafiltration (UF) using membranes of 30 kDa and 5 kDa molecular weight cut-offs (MWCOs). The feed sample and the filtrate and retentate solutions from each membrane system were analyzed by reversed-phase liquid chromatography (HPLC) with UV and mass spectrometric (MS) detection. The most abundant polyphenols in the extracts were identified and quantified, namely: caftaric acid with a concentration of 200 µg g-1 and trans-coutaric acid, cis-coutaric acid, gallic acid, and astilbin with concentrations between 15 and 40 µg g-1. Other minor phenolic acids and flavanols were also found. The UF process using the 30 kDa membrane did not modify the extract composition, but filtration through the 5 kDa poly-acrylonitrile membrane elicited a decrease in polyphenolic content. Hence, the 30 kDa membrane was recommended to further pre-process the extracts. The combined extraction and purification process presented here is environmentally friendly and demonstrates that malolactic fermentation lees of Albariño wines are a valuable source of phenolic compounds, especially phenolic acids.


Asunto(s)
Polifenoles , Ultrafiltración , Polifenoles/análisis , Extractos Vegetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA