Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 629(8013): 919-926, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589574

RESUMEN

RAS oncogenes (collectively NRAS, HRAS and especially KRAS) are among the most frequently mutated genes in cancer, with common driver mutations occurring at codons 12, 13 and 611. Small molecule inhibitors of the KRAS(G12C) oncoprotein have demonstrated clinical efficacy in patients with multiple cancer types and have led to regulatory approvals for the treatment of non-small cell lung cancer2,3. Nevertheless, KRASG12C mutations account for only around 15% of KRAS-mutated cancers4,5, and there are no approved KRAS inhibitors for the majority of patients with tumours containing other common KRAS mutations. Here we describe RMC-7977, a reversible, tri-complex RAS inhibitor with broad-spectrum activity for the active state of both mutant and wild-type KRAS, NRAS and HRAS variants (a RAS(ON) multi-selective inhibitor). Preclinically, RMC-7977 demonstrated potent activity against RAS-addicted tumours carrying various RAS genotypes, particularly against cancer models with KRAS codon 12 mutations (KRASG12X). Treatment with RMC-7977 led to tumour regression and was well tolerated in diverse RAS-addicted preclinical cancer models. Additionally, RMC-7977 inhibited the growth of KRASG12C cancer models that are resistant to KRAS(G12C) inhibitors owing to restoration of RAS pathway signalling. Thus, RAS(ON) multi-selective inhibitors can target multiple oncogenic and wild-type RAS isoforms and have the potential to treat a wide range of RAS-addicted cancers with high unmet clinical need. A related RAS(ON) multi-selective inhibitor, RMC-6236, is currently under clinical evaluation in patients with KRAS-mutant solid tumours (ClinicalTrials.gov identifier: NCT05379985).


Asunto(s)
Antineoplásicos , Mutación , Neoplasias , Proteína Oncogénica p21(ras) , Proteínas Proto-Oncogénicas p21(ras) , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Guanosina Trifosfato/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Proteína Oncogénica p21(ras)/antagonistas & inhibidores , Proteína Oncogénica p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Mol Oncol ; 18(6): 1552-1570, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38348572

RESUMEN

Serine/threonine-protein kinase B-raf (BRAF) mutations are found in 8-15% of colorectal cancer patients and identify a subset of tumors with poor outcome in the metastatic setting. We have previously reported that BRAF-mutant human cells display a high rate of protein production, causing proteotoxic stress, and are selectively sensitive to the proteasome inhibitors bortezomib and carfilzomib. In this work, we tested whether carfilzomib could restrain the growth of BRAF-mutant colorectal tumors not only by targeting cancer cells directly, but also by promoting an immune-mediated antitumor response. In human and mouse colorectal cancer cells, carfilzomib triggered robust endoplasmic reticulum stress and autophagy, followed by the emission of immunogenic-damage-associated molecules. Intravenous administration of carfilzomib delayed the growth of BRAF-mutant murine tumors and mobilized the danger-signal proteins calreticulin and high mobility group box 1 (HMGB1). Analyses of drug-treated samples revealed increased intratumor recruitment of activated cytotoxic T cells and natural killers, concomitant with the downregulation of forkhead box protein P3 (Foxp3)+ T-cell surface glycoprotein CD4 (CD4)+ T cells, indicating that carfilzomib promotes reshaping of the immune microenvironment of BRAF-mutant murine colorectal tumors. These results will inform the design of clinical trials in BRAF-mutant colorectal cancer patients.


Asunto(s)
Neoplasias Colorrectales , Mutación , Oligopéptidos , Proteínas Proto-Oncogénicas B-raf , Animales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Proteínas Proto-Oncogénicas B-raf/genética , Humanos , Oligopéptidos/farmacología , Oligopéptidos/uso terapéutico , Ratones , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Autofagia/efectos de los fármacos , Ratones Endogámicos C57BL
3.
Nat Commun ; 15(1): 7554, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215000

RESUMEN

Selective KRASG12C inhibitors have been developed to covalently lock the oncogene in the inactive GDP-bound state. Two of these molecules, sotorasib and adagrasib, are approved for the treatment of adult patients with KRASG12C-mutated previously treated advanced non-small cell lung cancer. Drug treatment imposes selective pressures leading to the outgrowth of drug-resistant variants. Mass sequencing from patients' biopsies identified a number of acquired KRAS mutations -both in cis and in trans- in resistant tumors. We demonstrate here that disease progression in vivo can also occur due to adaptive mechanisms and increased KRAS-GTP loading. Using the preclinical tool tri-complex KRASG12C-selective covalent inhibitor, RMC-4998 (also known as RM-029), that targets the active GTP-bound (ON) state of the oncogene, we provide a proof-of-concept that the clinical stage KRASG12C(ON) inhibitor RMC-6291 alone or in combination with KRASG12C(OFF) drugs can be an alternative potential therapeutic strategy to circumvent resistance due to increased KRAS-GTP loading.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Ratones , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Mutación , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Guanosina Trifosfato/metabolismo , Acetonitrilos , Piperazinas , Piridinas , Pirimidinas
4.
Drugs Context ; 112022.
Artículo en Inglés | MEDLINE | ID: mdl-36452878

RESUMEN

Constitutive KRAS signalling drives tumorigenesis across several cancer types. In non-small-cell lung cancer (NSCLC) activating KRAS mutations occur in ~30% of cases, and the glycine to cysteine substitution at codon 12 (G12C) is the most common KRAS alteration. Although KRAS mutations have been considered undruggable for over 40 years, the recent discovery of allelic-specific KRAS inhibitors has paved the way to personalized cancer medicine for patients with tumours harbouring these mutations. Here, we review the current treatment landscape for patients with advanced NSCLCs harbouring a KRAS G12C mutation, including PD-(L) 1-based therapies and direct KRAS inhibitors as well as sequential treatment options. We also explore the possible mechanisms of resistance to KRAS inhibition and strategies to overcome resistance in patients with KRAS G12C-mutant NSCLC.

5.
Clin Cancer Res ; 28(8): 1640-1650, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35091439

RESUMEN

PURPOSE: Activating missense mutations of KRAS are the most frequent oncogenic driver events in lung adenocarcinoma (LUAD). However, KRAS isoforms are highly heterogeneous, and data on the potential isoform-dependent therapeutic vulnerabilities are still lacking. EXPERIMENTAL DESIGN: We developed an isogenic cell-based platform to compare the oncogenic properties and specific therapeutic actionability of KRAS-mutant isoforms. In parallel, we analyzed clinicopathologic and genomic data from 3,560 patients with non-small cell lung cancer (NSCLC) to survey allele-specific features associated with oncogenic KRAS mutations. RESULTS: In isogenic cell lines expressing different mutant KRAS isoforms, we identified isoform-specific biochemical, biological, and oncogenic properties both in vitro and in vivo. These exclusive features correlated with different therapeutic responses to MEK inhibitors, with KRAS G12C and Q61H mutants being more sensitive compared with other isoforms. In vivo, combined KRAS G12C and MEK inhibition was more effective than either drug alone. Among patients with NSCLCs that underwent comprehensive tumor genomic profiling, STK11 and ATM mutations were significantly enriched among tumors harboring KRAS G12C, G12A, and G12V mutations. KEAP1 mutation was significantly enriched among KRAS G12C and KRAS G13X LUADs. KRAS G13X-mutated tumors had the highest frequency of concurrent STK11 and KEAP1 mutations. Transcriptomic profiling revealed unique patterns of gene expression in each KRAS isoform, compared with KRAS wild-type tumors. CONCLUSIONS: This study demonstrates that KRAS isoforms are highly heterogeneous in terms of concurrent genomic alterations and gene-expression profiles, and that stratification based on KRAS alleles should be considered in the design of future clinical trials.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Mutación , Factor 2 Relacionado con NF-E2/genética , Isoformas de Proteínas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
6.
Nat Commun ; 13(1): 1503, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314684

RESUMEN

Although reprogramming of cellular metabolism is a hallmark of cancer, little is known about how metabolic reprogramming contributes to early stages of transformation. Here, we show that the histone deacetylase SIRT6 regulates tumor initiation during intestinal cancer by controlling glucose metabolism. Loss of SIRT6 results in an increase in the number of intestinal stem cells (ISCs), which translates into enhanced tumor initiating potential in APCmin mice. By tracking down the connection between glucose metabolism and tumor initiation, we find a metabolic compartmentalization within the intestinal epithelium and adenomas, where a rare population of cells exhibit features of Warburg-like metabolism characterized by high pyruvate dehydrogenase kinase (PDK) activity. Our results show that these cells are quiescent cells expressing +4 ISCs and enteroendocrine markers. Active glycolysis in these cells suppresses ROS accumulation and enhances their stem cell and tumorigenic potential. Our studies reveal that aerobic glycolysis represents a heterogeneous feature of cancer, and indicate that this metabolic adaptation can occur in non-dividing cells, suggesting a role for the Warburg effect beyond biomass production in tumors.


Asunto(s)
Neoplasias , Sirtuinas , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Glucólisis/fisiología , Intestinos/patología , Ratones , Neoplasias/patología , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Sirtuinas/metabolismo
7.
BMC Genomics ; 9: 254, 2008 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-18510758

RESUMEN

BACKGROUND: Systematic search for genes whose gain-of-function by exogenous expression confers an advantage in cell-based selective screenings is a powerful method for unbiased functional exploration of the genome, and has the potential to disclose new targets for cancer therapy. A major limit of this approach resides in the labor-intensive cloning of resistant cells, identification of the integrated genes and validation of their ability to confer a selective advantage. Moreover, the selection has to be drastic and genes conferring a limited advantage are typically missed. RESULTS: We developed a new functional screening strategy based on transduction of mammalian cells of a given species with an expression library from another species, followed by one-shot quantitative tracing with DNA microarrays of all library-derived transcripts before and after selection. In this way, exogenous transcripts enriched after selection, and therefore likely to confer resistance, are readily detected. We transduced a retroviral cDNA expression library from mouse testis into human and canine cells, and optimized the use of commercial murine gene expression arrays for species-specific detection of library-derived transcripts. We then conducted a functional screening by growing library-transduced canine MDCK cells in suspension, to enrich for cDNAs conferring anchorage independence. Notably, these cells show partial resistance to loss of anchorage, and the selection can be of limited stringency, compromising approaches based on clonal selection or anyway requiring high stringency. Microarray analysis revealed reproducible enrichment after three weeks of growth on polyhema for seven genes, among which the Hras proto-oncogene and Sox5. When individually transduced into MDCK cells, Sox5 specifically promoted anchorage-independent growth, thereby confirming the validity and specificity of the approach. CONCLUSION: The procedure described here brings substantial advantages to the field of expression cloning, being faster, more systematic and more sensitive. Indeed, this strategy allowed identification and validation of genes promoting anchorage-independent growth of epithelial cells under selection conditions not amenable to conventional expression cloning.


Asunto(s)
Variación Genética , Fenotipo , Homología de Secuencia de Ácido Nucleico , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perros , Estudios de Factibilidad , Biblioteca de Genes , Humanos , Masculino , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proto-Oncogenes Mas , Reproducibilidad de los Resultados , Factores de Transcripción SOXD , Sensibilidad y Especificidad , Especificidad de la Especie , Testículo/metabolismo , Transducción Genética
9.
Oncotarget ; 8(24): 38193-38213, 2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28445144

RESUMEN

The role of paracrine Hepatocyte Growth Factor (HGF) in the resistance to angiogenesis inhibitors (AIs) is hidden in xenograft models because mouse HGF fails to fully activate human MET. To uncover it, we compared the efficacy of AIs in wild-type and human HGF knock-in SCID mice bearing orthotopic human colorectal tumors. Species-specific HGF/MET signaling dramatically impaired the response to anti-angiogenic agents and boosted metastatic dissemination. In cell-based assays mimicking the consequences of anti-angiogenic therapy, colorectal cancer cells were completely resistant to hypoxia but extremely sensitive to nutrient deprivation. Starvation-induced apoptosis could be prevented by HGF, which promoted GLUT1-mediated glucose uptake, sustained glycolysis and activated autophagy. Pharmacological inhibition of GLUT1 in the presence of glucose killed tumor cells as effectively as glucose deprivation, and this effect was antagonized by HGF. Concomitant targeting of GLUT1 and HGF potently suppressed growth and dissemination of AI-resistant human tumors in human HGF knock-in SCID mice without exacerbating tumor hypoxia. These data suggest that stroma-derived HGF protects CRC cells against glucose starvation-induced apoptosis, promoting resistance to both AIs and anti-glycolytic agents. Combined inhibition of glucose metabolism and HGF/MET signaling ('anti-METabolic therapy') may represent a more effective CRC treatment compared to utterly blocking tumor blood supply.


Asunto(s)
Adaptación Fisiológica/fisiología , Neoplasias Colorrectales/metabolismo , Resistencia a Antineoplásicos/fisiología , Factor de Crecimiento de Hepatocito/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Xenoinjertos , Humanos , Ratones , Ratones SCID , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal/fisiología , Microambiente Tumoral/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
10.
J Clin Invest ; 124(7): 3172-86, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24865428

RESUMEN

Activation of MET by HGF plays a key role in tumor progression. Using a recently developed llama platform that generates human-like immunoglobulins, we selected 68 different antibodies that compete with HGF for binding to MET. HGF-competing antibodies recognized 4 distinct hotspots localized in different MET domains. We identified 1 hotspot that coincides with the known HGF ß chain binding site on blades 2-3 of the SEMA domain ß-propeller. We determined that a second and a third hotspot lie within blade 5 of the SEMA domain and IPT domains 2-3, both of which are thought to bind to HGF α chain. Characterization of the fourth hotspot revealed a region across the PSI-IPT 1 domains not previously associated with HGF binding. Individual or combined targeting of these hotspots effectively interrupted HGF/MET signaling in multiple cell-based biochemical and biological assays. Selected antibodies directed against SEMA blades 2-3 and the PSI-IPT 1 region inhibited brain invasion and prolonged survival in a glioblastoma multiforme model, prevented metastatic disease following neoadjuvant therapy in a triple-negative mammary carcinoma model, and suppressed cancer cell dissemination to the liver in a KRAS-mutant metastatic colorectal cancer model. These results identify multiple regions of MET responsible for HGF-mediated tumor progression, unraveling the complexity of HGF-MET interaction, and provide selective molecular tools for targeting MET activity in cancer.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Anticuerpos Monoclonales , Afinidad de Anticuerpos , Sitios de Unión , Unión Competitiva , Neoplasias Encefálicas/patología , Camélidos del Nuevo Mundo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Glioblastoma/patología , Factor de Crecimiento de Hepatocito/química , Factor de Crecimiento de Hepatocito/inmunología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-met/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA