Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(14): 3726-3740.e43, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861993

RESUMEN

Many growth factors and cytokines signal by binding to the extracellular domains of their receptors and driving association and transphosphorylation of the receptor intracellular tyrosine kinase domains, initiating downstream signaling cascades. To enable systematic exploration of how receptor valency and geometry affect signaling outcomes, we designed cyclic homo-oligomers with up to 8 subunits using repeat protein building blocks that can be modularly extended. By incorporating a de novo-designed fibroblast growth factor receptor (FGFR)-binding module into these scaffolds, we generated a series of synthetic signaling ligands that exhibit potent valency- and geometry-dependent Ca2+ release and mitogen-activated protein kinase (MAPK) pathway activation. The high specificity of the designed agonists reveals distinct roles for two FGFR splice variants in driving arterial endothelium and perivascular cell fates during early vascular development. Our designed modular assemblies should be broadly useful for unraveling the complexities of signaling in key developmental transitions and for developing future therapeutic applications.


Asunto(s)
Diferenciación Celular , Factores de Crecimiento de Fibroblastos , Receptores de Factores de Crecimiento de Fibroblastos , Transducción de Señal , Animales , Humanos , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Ratones , Ligandos , Calcio/metabolismo , Sistema de Señalización de MAP Quinasas
2.
Cell ; 185(13): 2279-2291.e17, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35700730

RESUMEN

The isolation of CCoV-HuPn-2018 from a child respiratory swab indicates that more coronaviruses are spilling over to humans than previously appreciated. We determined the structures of the CCoV-HuPn-2018 spike glycoprotein trimer in two distinct conformational states and showed that its domain 0 recognizes sialosides. We identified that the CCoV-HuPn-2018 spike binds canine, feline, and porcine aminopeptidase N (APN) orthologs, which serve as entry receptors, and determined the structure of the receptor-binding B domain in complex with canine APN. The introduction of an oligosaccharide at position N739 of human APN renders cells susceptible to CCoV-HuPn-2018 spike-mediated entry, suggesting that single-nucleotide polymorphisms might account for viral detection in some individuals. Human polyclonal plasma antibodies elicited by HCoV-229E infection and a porcine coronavirus monoclonal antibody inhibit CCoV-HuPn-2018 spike-mediated entry, underscoring the cross-neutralizing activity among ɑ-coronaviruses. These data pave the way for vaccine and therapeutic development targeting this zoonotic pathogen representing the eighth human-infecting coronavirus.


Asunto(s)
Coronavirus Humano 229E , Infecciones por Coronavirus , Coronavirus , Animales , Antígenos CD13/química , Antígenos CD13/metabolismo , Gatos , Línea Celular , Coronavirus/metabolismo , Coronavirus Humano 229E/metabolismo , Perros , Humanos , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Porcinos
3.
Cell ; 184(21): 5432-5447.e16, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34619077

RESUMEN

Understanding vaccine-elicited protection against SARS-CoV-2 variants and other sarbecoviruses is key for guiding public health policies. We show that a clinical stage multivalent SARS-CoV-2 spike receptor-binding domain nanoparticle (RBD-NP) vaccine protects mice from SARS-CoV-2 challenge after a single immunization, indicating a potential dose-sparing strategy. We benchmarked serum neutralizing activity elicited by RBD-NPs in non-human primates against a lead prefusion-stabilized SARS-CoV-2 spike (HexaPro) using a panel of circulating mutants. Polyclonal antibodies elicited by both vaccines are similarly resilient to many RBD residue substitutions tested, although mutations at and surrounding position 484 have negative consequences for neutralization. Mosaic and cocktail nanoparticle immunogens displaying multiple sarbecovirus RBDs elicit broad neutralizing activity in mice and protect mice against SARS-CoV challenge even in the absence of SARS-CoV RBD in the vaccine. This study provides proof of principle that multivalent sarbecovirus RBD-NPs induce heterotypic protection and motivates advancing such broadly protective sarbecovirus vaccines to the clinic.

4.
Cell ; 183(5): 1367-1382.e17, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33160446

RESUMEN

A safe, effective, and scalable vaccine is needed to halt the ongoing SARS-CoV-2 pandemic. We describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 SARS-CoV-2 spike receptor-binding domains (RBDs) in a highly immunogenic array and induce neutralizing antibody titers 10-fold higher than the prefusion-stabilized spike despite a 5-fold lower dose. Antibodies elicited by the RBD nanoparticles target multiple distinct epitopes, suggesting they may not be easily susceptible to escape mutations, and exhibit a lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the assembled nanoparticles suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms and have launched cGMP manufacturing efforts to advance the SARS-CoV-2-RBD nanoparticle vaccine into the clinic.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Nanopartículas/química , Dominios Proteicos/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Vacunación , Adolescente , Adulto , Anciano , Animales , COVID-19/virología , Chlorocebus aethiops , Estudios de Cohortes , Epítopos/inmunología , Femenino , Células HEK293 , Humanos , Macaca nemestrina , Masculino , Ratones Endogámicos BALB C , Persona de Mediana Edad , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero , Adulto Joven
5.
Immunity ; 56(10): 2425-2441.e14, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37689061

RESUMEN

Nanoparticles for multivalent display and delivery of vaccine antigens have emerged as a promising avenue for enhancing B cell responses to protein subunit vaccines. Here, we evaluated B cell responses in rhesus macaques immunized with prefusion-stabilized respiratory syncytial virus (RSV) F glycoprotein trimer compared with nanoparticles displaying 10 or 20 copies of the same antigen. We show that multivalent display skews antibody specificities and drives epitope-focusing of responding B cells. Antibody cloning and repertoire sequencing revealed that focusing was driven by the expansion of clonally distinct B cells through recruitment of diverse precursors. We identified two antibody lineages that developed either ultrapotent neutralization or pneumovirus cross-neutralization from precursor B cells with low initial affinity for the RSV-F immunogen. This suggests that increased avidity by multivalent display facilitates the activation and recruitment of these cells. Diversification of the B cell response by multivalent nanoparticle immunogens has broad implications for vaccine design.

6.
Nature ; 591(7850): 482-487, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33503651

RESUMEN

Naturally occurring protein switches have been repurposed for the development of biosensors and reporters for cellular and clinical applications1. However, the number of such switches is limited, and reengineering them is challenging. Here we show that a general class of protein-based biosensors can be created by inverting the flow of information through de novo designed protein switches in which the binding of a peptide key triggers biological outputs of interest2. The designed sensors are modular molecular devices with a closed dark state and an open luminescent state; analyte binding drives the switch from the closed to the open state. Because the sensor is based on the thermodynamic coupling of analyte binding to sensor activation, only one target binding domain is required, which simplifies sensor design and allows direct readout in solution. We create biosensors that can sensitively detect the anti-apoptosis protein BCL-2, the IgG1 Fc domain, the HER2 receptor, and Botulinum neurotoxin B, as well as biosensors for cardiac troponin I and an anti-hepatitis B virus antibody with the high sensitivity required to detect these molecules clinically. Given the need for diagnostic tools to track the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)3, we used the approach to design sensors for the SARS-CoV-2 spike protein and antibodies against the membrane and nucleocapsid proteins. The former, which incorporates a de novo designed spike receptor binding domain (RBD) binder4, has a limit of detection of 15 pM and a luminescence signal 50-fold higher than the background level. The modularity and sensitivity of the platform should enable the rapid construction of sensors for a wide range of analytes, and highlights the power of de novo protein design to create multi-state protein systems with new and useful functions.


Asunto(s)
Anticuerpos Antivirales/análisis , Técnicas Biosensibles/métodos , Virus de la Hepatitis B/inmunología , SARS-CoV-2/química , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/análisis , Troponina I/análisis , Anticuerpos Antivirales/inmunología , Técnicas Biosensibles/normas , Toxinas Botulínicas/análisis , Proteínas de la Nucleocápside de Coronavirus/inmunología , Inmunoglobulina G/análisis , Inmunoglobulina G/inmunología , Límite de Detección , Luminiscencia , Fosfoproteínas/inmunología , Proteínas Proto-Oncogénicas c-bcl-2/análisis , Receptor ErbB-2/análisis , Sensibilidad y Especificidad , Proteínas de la Matriz Viral/inmunología
7.
Nature ; 594(7862): 253-258, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33873199

RESUMEN

The development of a portfolio of COVID-19 vaccines to vaccinate the global population remains an urgent public health imperative1. Here we demonstrate the capacity of a subunit vaccine, comprising the SARS-CoV-2 spike protein receptor-binding domain displayed on an I53-50 protein nanoparticle scaffold (hereafter designated RBD-NP), to stimulate robust and durable neutralizing-antibody responses and protection against SARS-CoV-2 in rhesus macaques. We evaluated five adjuvants including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an α-tocopherol-containing oil-in-water emulsion; AS37, a Toll-like receptor 7 (TLR7) agonist adsorbed to alum; CpG1018-alum, a TLR9 agonist formulated in alum; and alum. RBD-NP immunization with AS03, CpG1018-alum, AS37 or alum induced substantial neutralizing-antibody and CD4 T cell responses, and conferred protection against SARS-CoV-2 infection in the pharynges, nares and bronchoalveolar lavage. The neutralizing-antibody response to live virus was maintained up to 180 days after vaccination with RBD-NP in AS03 (RBD-NP-AS03), and correlated with protection from infection. RBD-NP immunization cross-neutralized the B.1.1.7 SARS-CoV-2 variant efficiently but showed a reduced response against the B.1.351 variant. RBD-NP-AS03 produced a 4.5-fold reduction in neutralization of B.1.351 whereas the group immunized with RBD-NP-AS37 produced a 16-fold reduction in neutralization of B.1.351, suggesting differences in the breadth of the neutralizing-antibody response induced by these adjuvants. Furthermore, RBD-NP-AS03 was as immunogenic as a prefusion-stabilized spike immunogen (HexaPro) with AS03 adjuvant. These data highlight the efficacy of the adjuvanted RBD-NP vaccine in promoting protective immunity against SARS-CoV-2 and have led to phase I/II clinical trials of this vaccine (NCT04742738 and NCT04750343).


Asunto(s)
Adyuvantes Inmunológicos , Anticuerpos Neutralizantes/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunas de Subunidad/inmunología , Compuestos de Alumbre , Animales , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , COVID-19/virología , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Modelos Animales de Enfermedad , Inmunidad Celular , Inmunidad Humoral , Macaca mulatta/inmunología , Masculino , Oligodesoxirribonucleótidos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Escualeno
8.
Proc Natl Acad Sci U S A ; 120(11): e2214556120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36888664

RESUMEN

Computationally designed protein nanoparticles have recently emerged as a promising platform for the development of new vaccines and biologics. For many applications, secretion of designed nanoparticles from eukaryotic cells would be advantageous, but in practice, they often secrete poorly. Here we show that designed hydrophobic interfaces that drive nanoparticle assembly are often predicted to form cryptic transmembrane domains, suggesting that interaction with the membrane insertion machinery could limit efficient secretion. We develop a general computational protocol, the Degreaser, to design away cryptic transmembrane domains without sacrificing protein stability. The retroactive application of the Degreaser to previously designed nanoparticle components and nanoparticles considerably improves secretion, and modular integration of the Degreaser into design pipelines results in new nanoparticles that secrete as robustly as naturally occurring protein assemblies. Both the Degreaser protocol and the nanoparticles we describe may be broadly useful in biotechnological applications.


Asunto(s)
Nanopartículas , Vacunas , Proteínas , Nanopartículas/química
9.
Nat Mater ; 22(12): 1556-1563, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37845322

RESUMEN

Protein crystallization plays a central role in structural biology. Despite this, the process of crystallization remains poorly understood and highly empirical, with crystal contacts, lattice packing arrangements and space group preferences being largely unpredictable. Programming protein crystallization through precisely engineered side-chain-side-chain interactions across protein-protein interfaces is an outstanding challenge. Here we develop a general computational approach for designing three-dimensional protein crystals with prespecified lattice architectures at atomic accuracy that hierarchically constrains the overall number of degrees of freedom of the system. We design three pairs of oligomers that can be individually purified, and upon mixing, spontaneously self-assemble into >100 µm three-dimensional crystals. The structures of these crystals are nearly identical to the computational design models, closely corresponding in both overall architecture and the specific protein-protein interactions. The dimensions of the crystal unit cell can be systematically redesigned while retaining the space group symmetry and overall architecture, and the crystals are extremely porous and highly stable. Our approach enables the computational design of protein crystals with high accuracy, and the designed protein crystals, which have both structural and assembly information encoded in their primary sequences, provide a powerful platform for biological materials engineering.


Asunto(s)
Proteínas , Proteínas/química , Cristalización
10.
Environ Sci Technol ; 58(4): 1882-1893, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38214663

RESUMEN

The expansion of renewable energy and the large-scale deployment of carbon dioxide (CO2) capture and storage (CCS) can decarbonize the power sector. The use of CO2 to extract geothermal heat from naturally porous and permeable sedimentary basins to generate electricity (CO2-plume geothermal (CPG) system) presents an opportunity to simultaneously generate renewable energy and geologically store CO2. In this study, we estimate the life cycle greenhouse gas (GHG) impacts of CPG systems through 12 scenarios in which CPG systems are combined with one of six CO2 sources (e.g., bioenergy with carbon capture and storage (BECCS) and iron and steel facilities) and operate in two geological settings. We find the life cycle GHG emissions of CPG systems ranging from -0.25 to -6.18 kg CO2eq/kWh. CPG systems can achieve the highest emissions reductions when utilizing the CO2 captured from BECCS. We evaluate uncertainty through a Monte Carlo simulation, demonstrating consistent net reductions in life cycle emissions and a local, one-parameter-at-a-time sensitivity analysis that identifies the CO2 capture capacity as the high-impact parameter of the results. Through the production of electricity, CPG systems can provide additional environmental benefits to the deployment of large-scale CCS.


Asunto(s)
Gases de Efecto Invernadero , Gases de Efecto Invernadero/análisis , Dióxido de Carbono/análisis , Energía Renovable , Efecto Invernadero
11.
Biochemistry ; 62(2): 358-368, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36627259

RESUMEN

A challenge for design of protein-small-molecule recognition is that incorporation of cavities with size, shape, and composition suitable for specific recognition can considerably destabilize protein monomers. This challenge can be overcome through binding pockets formed at homo-oligomeric interfaces between folded monomers. Interfaces surrounding the central homo-oligomer symmetry axes necessarily have the same symmetry and so may not be well suited to binding asymmetric molecules. To enable general recognition of arbitrary asymmetric substrates and small molecules, we developed an approach to designing asymmetric interfaces at off-axis sites on homo-oligomers, analogous to those found in native homo-oligomeric proteins such as glutamine synthetase. We symmetrically dock curved helical repeat proteins such that they form pockets at the asymmetric interface of the oligomer with sizes ranging from several angstroms, appropriate for binding a single ion, to up to more than 20 Å across. Of the 133 proteins tested, 84 had soluble expression in E. coli, 47 had correct oligomeric states in solution, 35 had small-angle X-ray scattering (SAXS) data largely consistent with design models, and 8 had negative-stain electron microscopy (nsEM) 2D class averages showing the structures coming together as designed. Both an X-ray crystal structure and a cryogenic electron microscopy (cryoEM) structure are close to the computational design models. The nature of these proteins as homo-oligomers allows them to be readily built into higher-order structures such as nanocages, and the asymmetric pockets of these structures open rich possibilities for small-molecule binder design free from the constraints associated with monomer destabilization.


Asunto(s)
Proteínas , Escherichia coli/genética , Glutamato-Amoníaco Ligasa , Proteínas/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
12.
Ann Fam Med ; 21(Suppl 2): S14-S21, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36849483

RESUMEN

PURPOSE: We undertook a study to evaluate the current state of pedagogy on antiracism, including barriers to implementation and strengths of existing curricula, in undergraduate medical education (UME) and graduate medical education (GME) programs in US academic health centers. METHODS: We conducted a cross-sectional study with an exploratory qualitative approach using semistructured interviews. Participants were leaders of UME and GME programs at 5 institutions participating in the Academic Units for Primary Care Training and Enhancement program and 6 affiliated sites from November 2021 to April 2022. RESULTS: A total of 29 program leaders from the 11 academic health centers participated in this study. Three participants from 2 institutions reported the implementation of robust, intentional, and longitudinal antiracism curricula. Nine participants from 7 institutions described race and antiracism-related topics integrated into health equity curricula. Only 9 participants reported having "adequately trained" faculty. Participants mentioned individual, systemic, and structural barriers to implementing antiracism-related training in medical education such as institutional inertia and insufficient resources. Fear related to introducing an antiracism curriculum and undervaluing of this curriculum relative to other content were identified. Through learners and faculty feedback, antiracism content was evaluated and included in UME and GME curricula. Most participants identified learners as a stronger voice for transformation than faculty; antiracism content was mainly included in health equity curricula. CONCLUSIONS: Inclusion of antiracism in medical education requires intentional training, focused institutional policies, enhanced foundational awareness of the impact of racism on patients and communities, and changes at the level of institutions and accreditation bodies.


Asunto(s)
Antiracismo , Educación Médica , Humanos , Estudios Transversales , Curriculum , Educación de Postgrado en Medicina
13.
Med Teach ; 45(8): 816-821, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37134226

RESUMEN

Racism has implicit and explicit manifestations that perpetuate disparities and negatively influence patient-centered health outcomes. Subsequently, a list of action items was provided to assist medical schools in becoming anti-racist institutions. A deep subject matter knowledge, beliefs, and reflections were a driving force for the management of medical schools or faculty members involved in undergraduate and postgraduate medical education to move forward toward inclusion of anti-racism in traditional medical curriculum or adapting existing training modules on diversity, equity, and inclusion. This paper proposes twelve practical and specific tips for implementing and teaching anti-racism in medical education. These twelve tips elaborate on the proposed actions for leaders in undergraduate and postgraduate medical education, valuable for designing future curricula and educational activities.


Asunto(s)
Antiracismo , Educación Médica , Humanos , Curriculum , Docentes , Estudiantes
14.
Environ Eng Sci ; 39(9): 770-783, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36196099

RESUMEN

Coal mine drainage (CMD) impairs tens of thousands of kilometers of U.S. waterways each year, in part with the leaching of low concentrations of rare earth elements (REEs). REEs are essential for modern technologies, yet economically viable natural deposits are geospatially limited, thus engendering geopolitical concerns, and their mining is energy intense and environmentally destructive. This work summarizes laboratory-scale experimental results of a trap-extract-precipitate (TEP) process and uses the mass and energy balances to estimate the economic costs and environmental impacts of the TEP. The TEP process uses the alkalinity and filtering capacity of stabilized flue gas desulfurization (sFGD) material or water treatment plant (WTP) sludge to remediate CMD waters and extract REEs. Passive treatment systems that use WTP sludge are cheaper than those that use sFGD material ($89,300/year or $86/gT-REE vs. $89,800/year or $278/gT-REE) and have improved environmental performance across all indicators from two different impact assessment methods. These differences are largely attributable to the larger neutralizing capacity of WTP sludge in the treatment application.

15.
Anesthesiology ; 126(1): 140-149, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27792046

RESUMEN

BACKGROUND: Experimental data suggest that ivabradine, an inhibitor of the pacemaker current in sinoatrial node, exerts beneficial effects on endothelial cell function, but it is unclear if this drug could prevent microcirculatory dysfunction in septic subjects, improving tissue perfusion and reducing organ failure. Therefore, this study was designed to characterize the microcirculatory effects of ivabradine on a murine model of abdominal sepsis using intravital videomicroscopy. METHODS: Twenty-eight golden Syrian hamsters were allocated in four groups: sham-operated animals, nontreated septic animals, septic animals treated with saline, and septic animals treated with ivabradine (2.0 mg/kg intravenous bolus + 0.5 mg · kg · h). The primary endpoint was the effect of ivabradine on the microcirculation of skinfold chamber preparations, assessed by changes in microvascular reactivity and rheologic variables, and the secondary endpoint was its effects on organ function, evaluated by differences in arterial blood pressure, motor activity score, arterial blood gases, and hematologic and biochemical parameters among groups. RESULTS: Compared with septic animals treated with saline, those treated with ivabradine had greater functional capillary density (90 ± 4% of baseline values vs. 71 ± 16%; P < 0.001), erythrocyte velocity in capillaries (87 ± 11% of baseline values vs. 62 ± 14%; P < 0.001), and arteriolar diameter (99 ± 4% of baseline values vs. 91 ± 7%; P = 0.041) at the end of the experiment. Besides that, ivabradine-treated animals had less renal, hepatic, and neurologic dysfunction. CONCLUSIONS: Ivabradine was effective in reducing microvascular derangements evoked by experimental sepsis, which was accompanied by less organ dysfunction. These results suggest that ivabradine yields beneficial effects on the microcirculation of septic animals.


Asunto(s)
Benzazepinas/farmacología , Fármacos Cardiovasculares/farmacología , Microcirculación/efectos de los fármacos , Sepsis/fisiopatología , Animales , Cricetinae , Modelos Animales de Enfermedad , Ivabradina , Masculino , Mesocricetus , Microcirculación/fisiología
16.
Am J Physiol Heart Circ Physiol ; 311(1): H24-35, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27106039

RESUMEN

Abnormal microvascular perfusion, including decreased functional capillary density and increased blood flow heterogeneity, is observed in early stages of the systemic inflammatory response to infection and appears to have prognostic significance in human sepsis. It is known that improvements in systemic hemodynamics are weakly correlated with the correction of microcirculatory parameters, despite an appropriate treatment of macrohemodynamic abnormalities. Furthermore, conventional hemodynamic monitoring systems available in clinical practice fail to detect microcirculatory parameter changes and responses to treatments, as they do not evaluate intrinsic events that occur in the microcirculation. Fortunately, some bedside diagnostic methods and therapeutic options are specifically directed to the assessment and treatment of microcirculatory changes. In the present review we discuss fundamental aspects of septic microcirculatory abnormalities, including pathophysiology, clinical monitoring, and potential therapies.


Asunto(s)
Hemodinámica , Microcirculación , Microvasos/fisiopatología , Sepsis/fisiopatología , Animales , Biomarcadores/sangre , Técnicas de Diagnóstico Cardiovascular , Humanos , Valor Predictivo de las Pruebas , Recuperación de la Función , Sepsis/sangre , Sepsis/diagnóstico , Sepsis/terapia , Transducción de Señal , Resultado del Tratamiento
17.
Anesthesiology ; 122(3): 619-30, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25313879

RESUMEN

BACKGROUND: Dexmedetomidine, an α-2 adrenergic receptor agonist, has already been used in septic patients although few studies have examined its effects on microcirculatory dysfunction, which may play an important role in perpetuating sepsis syndrome. Therefore, the authors have designed a controlled experimental study to characterize the microcirculatory effects of dexmedetomidine in an endotoxemia rodent model that allows in vivo studies of microcirculation. METHODS: After skinfold chamber implantation, 49 golden Syrian hamsters were randomly allocated in five groups: (1) control animals; (2) nonendotoxemic animals treated with saline; (3) nonendotoxemic animals treated with dexmedetomidine (5.0 µg kg h); (4) endotoxemic (lipopolysaccharide 1.0 mg/kg) animals treated with saline; and (5) endotoxemic animals treated with dexmedetomidine. Intravital microscopy of skinfold chamber preparations allowed quantitative analysis of microvascular variables and venular leukocyte rolling and adhesion. Mean arterial blood pressure, heart rate, arterial blood gases, and lactate concentrations were also documented. RESULTS: Lipopolysaccharide administration increased leukocyte rolling and adhesion and decreased capillary perfusion. Dexmedetomidine significantly attenuated these responses: compared with endotoxemic animals treated with saline, those treated with dexmedetomidine had less leukocyte rolling (11.8 ± 7.2% vs. 24.3 ± 15.0%; P < 0.05) and adhesion (237 ± 185 vs. 510 ± 363; P < 0.05) and greater functional capillary density (57.4 ± 11.2% of baseline values vs. 45.9 ± 11.2%; P < 0.05) and erythrocyte velocity (68.7 ± 17.6% of baseline values vs. 54.4 ± 14.8%; P < 0.05) at the end of the experiment. CONCLUSIONS: Dexmedetomidine decreased lipopolysaccharide-induced leukocyte-endothelial interactions in the hamster skinfold chamber microcirculation. This was accompanied by a significant attenuation of capillary perfusion deficits, suggesting that dexmedetomidine yields beneficial effects on endotoxemic animals' microcirculation.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Dexmedetomidina/uso terapéutico , Microcirculación/fisiología , Sepsis/prevención & control , Sepsis/fisiopatología , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Animales , Velocidad del Flujo Sanguíneo/efectos de los fármacos , Velocidad del Flujo Sanguíneo/fisiología , Cricetinae , Dexmedetomidina/farmacología , Masculino , Mesocricetus , Microcirculación/efectos de los fármacos
18.
J Transl Med ; 12: 232, 2014 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-25151363

RESUMEN

BACKGROUND: Relative hypovolemia is frequently found in early stages of severe sepsis and septic shock and prompt and aggressive fluid therapy has become standard of care improving tissue perfusion and patient outcome. This paper investigates the role of the nitric oxide pathway on beneficial microcirculatory effects of fluid resuscitation. METHODS: After skinfold chamber implantation procedures and endotoxemia induction by intravenous Escherichia coli lipopolysaccharide administration (2 mg x kg(-1)), male golden Syrian hamsters were fluid resuscitated and then sequentially treated with L-Nω-Nitroarginine and L-Arginine hydrochloride (LPS/FR/LNNA group). Intravital microscopy of skinfold chamber preparations allowed quantitative analysis of microvascular variables including venular leukocyte rolling and adhesion. Macro-hemodynamic, biochemical and hematological parameters as well as survival rate were also evaluated. Endotoxemic hamsters treated with fluid therapy alone (LPS/FR group) and non-treated animals (LPS group) served as controls. RESULTS: Fluid resuscitation was effective in reducing lipopolysaccharide-induced microcirculatory changes. After 3 hours of lipopolysaccharide administration, non-fluid resuscitated animals (LPS group) had the lowest functional capillary density (1% from baseline for LPS group vs. 19% for LPS/FR one; p <0.05). At the same time point, arteriolar mean internal diameter was significantly wider in LPS/FR group than in LPS one (100% vs. 50% from baseline). Fluid resuscitation also reduced leukocyte-endothelium interactions and sequestration (p <0.05 for LPS vs. LPS/FR group) and increased survival (median survival time: 2 and 5.5 days for LPS and LPS/FR groups, respectively; p <0.05). Nitric oxide synthase inhibition prevented these protective effects, while L-Arginine administration markedly restored many of them. CONCLUSION: Our results suggest that the underlying mechanism of fluid therapy is the restoration of nitric oxide bioavailability, because inhibition of NOS prevented many of its beneficial effects. Nevertheless, further investigations are required in experimental models closer to conditions of human sepsis to confirm these results.


Asunto(s)
Capilares/fisiopatología , Endotoxemia/terapia , Fluidoterapia/métodos , Mediadores de Inflamación/metabolismo , Óxido Nítrico/fisiología , Resucitación/métodos , Choque Séptico/terapia , Animales , Cricetinae , Modelos Animales de Enfermedad , Endotoxemia/metabolismo , Endotoxemia/mortalidad , Endotoxemia/fisiopatología , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/mortalidad , Infecciones por Escherichia coli/fisiopatología , Infecciones por Escherichia coli/terapia , Lipopolisacáridos , Masculino , Mesocricetus , Microcirculación , Óxido Nítrico/farmacología , Choque Séptico/metabolismo , Choque Séptico/mortalidad , Choque Séptico/fisiopatología , Transducción de Señal/efectos de los fármacos
19.
Rev Bras Ortop (Sao Paulo) ; 59(3): e449-e455, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38911881

RESUMEN

Objective To evaluate surgeons' performance in resecting CAM-type deformities using a realistic arthroscopic surgery simulator. Methods An arthroscopic simulator was created using low-cost materials with the help of a GTMax Core A1 3D printer and the programs Invesalius and Meshmixer 2017, which were used to develop femoral head parts in ABS material, with the presence of a CAM-type deformity, to mimic a femoroacetabular impact situation. After the operations were performed by 16 surgeons, the femurs were compared to a previous model with deformity and another without, using Cloudcompare, and parameters such as the volumetric difference between the operated femurs, with and without deformity, the minimum and maximum distance between them, the percentage of the deformity resected, the estimated time for total resection of the deformity, as well as a qualitative analysis based on the images and graphs provided by the program representing the areas of the parts resected, were evaluated at the end. Results The average resection speed was 34.66 mm 3 /min (SD = 46 mm 3 /min, max = 147.33; min = -2.66). The average resection rate was 26.2% (SD = 34.7%, max = 111; min = -2). Qualitative analysis showed hyporesection of deformities and sometimes hyperresection of nondeformed areas. The simulator was highly rated by the surgeons, with a tactile sensation very similar to real surgery, according to them. Conclusion Arthroscopic simulators have proved very useful in training less experienced surgeons.

20.
Nat Struct Mol Biol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724718

RESUMEN

Programming protein nanomaterials to respond to changes in environmental conditions is a current challenge for protein design and is important for targeted delivery of biologics. Here we describe the design of octahedral non-porous nanoparticles with a targeting antibody on the two-fold symmetry axis, a designed trimer programmed to disassemble below a tunable pH transition point on the three-fold axis, and a designed tetramer on the four-fold symmetry axis. Designed non-covalent interfaces guide cooperative nanoparticle assembly from independently purified components, and a cryo-EM density map closely matches the computational design model. The designed nanoparticles can package protein and nucleic acid payloads, are endocytosed following antibody-mediated targeting of cell surface receptors, and undergo tunable pH-dependent disassembly at pH values ranging between 5.9 and 6.7. The ability to incorporate almost any antibody into a non-porous pH-dependent nanoparticle opens up new routes to antibody-directed targeted delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA