Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochim Biophys Acta Bioenerg ; 1858(4): 267-275, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28089911

RESUMEN

Mitochondrial respiratory-chain complexes from Euglenozoa comprise classical subunits described in other eukaryotes (i.e. mammals and fungi) and subunits that are restricted to Euglenozoa (e.g. Euglena gracilis and Trypanosoma brucei). Here we studied the mitochondrial F1FO-ATP synthase (or Complex V) from the photosynthetic eukaryote E. gracilis in detail. The enzyme was purified by a two-step chromatographic procedure and its subunit composition was resolved by a three-dimensional gel electrophoresis (BN/SDS/SDS). Twenty-two different subunits were identified by mass-spectrometry analyses among which the canonical α, ß, γ, δ, ε, and OSCP subunits, and at least seven subunits previously found in Trypanosoma. The ADP/ATP carrier was also associated to the ATP synthase into a dimeric ATP synthasome. Single-particle analysis by transmission electron microscopy of the dimeric ATP synthase indicated that the structures of both the catalytic and central rotor parts are conserved while other structural features are original. These new features include a large membrane-spanning region joining the monomers, an external peripheral stalk and a structure that goes through the membrane and reaches the inter membrane space below the c-ring, the latter having not been reported for any mitochondrial F-ATPase.


Asunto(s)
Euglena gracilis/enzimología , ATPasas de Translocación de Protón Mitocondriales/análisis , Microscopía Electrónica , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/aislamiento & purificación , Multimerización de Proteína , Subunidades de Proteína/análisis
2.
Artículo en Inglés | MEDLINE | ID: mdl-37486539

RESUMEN

Oxygenic photosynthesis is responsible for most of the fixation of atmospheric CO2. The microalgal community can transport atmospheric carbon into biological cycles in which no additional CO2 is created. This represents a resource to confront the actual climate change crisis. These organisms have evolved to adapt to several environments and different spectral distribution of light that may strongly influence their metabolism. Therefore, there is a need for development of photobioreactors specialized in addressing spectral optimization. Here, a multi-scale modular photobioreactor made from standard glass materials, ad hoc light circuits, and easily accessible, small commercial devices is described. The system is suitable to manage the principal culture variables of research in bioenergetics and photosynthesis. Its performance was tested by growing four evolutionary-distant microalgal species with different endosymbiotic scenarios: Chlamydomonas reinhardtii (Archaeplastida, green primary plastid), Polytomella parva (Archaeplastida, colorless plastid), Euglena gracilis (Discoba, green secondary plastid), and Phaeodactylum tricornutum (Stramenophiles, red secondary plastid). Our results show an improvement of biomass production, as compared to the traditional flask system. The modulation of the incident light spectra allowed us to observe a far-red adaptation in Euglena gracilis with a difference on paramylon production, and it also significantly increased the maximal cell density of the diatom species under green light. Together, these confirm that for photobioreactors with artificial light, manipulation of the light spectrum is a critical parameter for controlling the optimal performance, depending on the downstream goals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA