Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834789

RESUMEN

We developed a sensing strategy that mimics the bead-based electrogenerated chemiluminescence immunoassay. However, instead of the most common metal complexes, such as Ru or Ir, the luminophore is luminol. The electrogenerated chemiluminescence of luminol was promoted by in situ electrochemical generation of hydrogen peroxide at a boron-doped diamond electrode. The electrochemical production of hydrogen peroxide was achieved in a carbonate solution by an oxidation reaction, while at the same time, microbeads labelled with luminol were deposited on the electrode surface. For the first time, we proved that was possible to obtain light emission from luminol without its direct oxidation at the electrode. This new emission mechanism is obtained at higher potentials than the usual luminol electrogenerated chemiluminescence at 0.3-0.5 V, in conjunction with hydrogen peroxide production on boron-doped diamond at around 2-2.5 V (vs Ag/AgCl).

2.
Luminescence ; 36(2): 278-293, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32945075

RESUMEN

Recent advancements in synthetic biology, organic chemistry, and computational models have allowed the application of bioluminescence in several fields, ranging from well established methods for detecting microbial contamination to in vivo imaging to track cancer and stem cells, from cell-based assays to optogenetics. Moreover, thanks to recent technological progress in miniaturized and sensitive light detectors, such as photodiodes and imaging sensors, it is possible to implement laboratory-based assays, such as cell-based and enzymatic assays, into portable analytical devices for point-of-care and on-site applications. This review highlights some recent advances in the development of whole-cell and cell-free bioluminescence biosensors with a glance on current challenges and different strategies that have been used to turn bioassays into biosensors with the required analytical performance. Critical issues and unsolved technical problems are also highlighted, to give the reader a taste of this fascinating and challenging field.


Asunto(s)
Técnicas Biosensibles
3.
Sensors (Basel) ; 21(16)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34450874

RESUMEN

In recent years, there has been a continuously growing interest in antioxidants by both customers and food industry. The beneficial health effects of antioxidants led to their widespread use in fortified functional foods, as dietary supplements and as preservatives. A variety of analytical methods are available to evaluate the total antioxidant capacity (TAC) of food extracts and beverages. However, most of them are expensive, time-consuming, and require laboratory instrumentation. Therefore, simple, cheap, and fast portable sensors for point-of-need measurement of antioxidants in food samples are needed. Here, we describe a smartphone-based chemosensor for on-site assessment of TAC of aqueous matrices, relying on the antioxidant-induced formation of gold nanoparticles. The reaction takes place in ready-to-use analytical cartridges containing an hydrogel reaction medium preloaded with Au(III) and is monitored by using the smartphone's CMOS camera. An analytical device including an LED-based lighting system was developed to ensure uniform and reproducible illumination of the analytical cartridge. The chemosensor permitted rapid TAC measurements of aqueous samples, including teas, herbal infusions, beverages, and extra virgin olive oil extracts, providing results that correlated with those of the reference methods for TAC assessment, e.g., oxygen radical absorbance capacity (ORAC).


Asunto(s)
Antioxidantes , Nanopartículas del Metal , Suplementos Dietéticos , Oro , Fenoles/análisis , Polifenoles , Teléfono Inteligente
4.
Sensors (Basel) ; 21(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202483

RESUMEN

Since the introduction of paper-based analytical devices as potential diagnostic platforms a few decades ago, huge efforts have been made in this field to develop systems suitable for meeting the requirements for the point-of-care (POC) approach. Considerable progress has been achieved in the adaptation of existing analysis methods to a paper-based format, especially considering the chemiluminescent (CL)-immunoassays-based techniques. The implementation of biospecific assays with CL detection and paper-based technology represents an ideal solution for the development of portable analytical devices for on-site applications, since the peculiarities of these features create a unique combination for fitting the POC purposes. Despite this, the scientific production is not paralleled by the diffusion of such devices into everyday life. This review aims to highlight the open issues that are responsible for this discrepancy and to find the aspects that require a focused and targeted research to make these methods really applicable in routine analysis.


Asunto(s)
Técnicas Biosensibles , Luminiscencia , Inmunoensayo , Sistemas de Atención de Punto
5.
Sensors (Basel) ; 21(10)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34065971

RESUMEN

Paper-based lateral-flow immunoassays (LFIAs) have achieved considerable commercial success and their impact in diagnostics is continuously growing. LFIA results are often obtained by visualizing by the naked eye color changes in given areas, providing a qualitative information about the presence/absence of the target analyte in the sample. However, this platform has the potential to provide ultrasensitive quantitative analysis for several applications. Indeed, LFIA is based on well-established immunological techniques, which have known in the last year great advances due to the combination of highly sensitive tracers, innovative signal amplification strategies and last-generation instrumental detectors. All these available progresses can be applied also to the LFIA platform by adapting them to a portable and miniaturized format. This possibility opens countless strategies for definitively turning the LFIA technique into an ultrasensitive quantitative method. Among the different proposals for achieving this goal, the use of enzyme-based immunoassay is very well known and widespread for routine analysis and it can represent a valid approach for improving LFIA performances. Several examples have been recently reported in literature exploiting enzymes properties and features for obtaining significative advances in this field. In this review, we aim to provide a critical overview of the recent progresses in highly sensitive LFIA detection technologies, involving the exploitation of enzyme-based amplification strategies. The features and applications of the technologies, along with future developments and challenges, are also discussed.


Asunto(s)
Inmunoensayo , Técnicas para Inmunoenzimas
6.
Anal Bioanal Chem ; 410(3): 669-677, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29026940

RESUMEN

Precision medicine is a new paradigm that combines diagnostic, imaging, and analytical tools to produce accurate diagnoses and therapeutic interventions tailored to the individual patient. This approach stands in contrast to the traditional "one size fits all" concept, according to which researchers develop disease treatments and preventions for an "average" patient without considering individual differences. The "one size fits all" concept has led to many ineffective or inappropriate treatments, especially for pathologies such as Alzheimer's disease and cancer. Now, precision medicine is receiving massive funding in many countries, thanks to its social and economic potential in terms of improved disease prevention, diagnosis, and therapy. Bioanalytical chemistry is critical to precision medicine. This is because identifying an appropriate tailored therapy requires researchers to collect and analyze information on each patient's specific molecular biomarkers (e.g., proteins, nucleic acids, and metabolites). In other words, precision diagnostics is not possible without precise bioanalytical chemistry. This Trend article highlights some of the most recent advances, including massive analysis of multilayer omics, and new imaging technique applications suitable for implementing precision medicine. Graphical abstract Precision medicine combines bioanalytical chemistry, molecular diagnostics, and imaging tools for performing accurate diagnoses and selecting optimal therapies for each patient.


Asunto(s)
Técnicas de Química Analítica/métodos , Biología Computacional/métodos , Medicina de Precisión/métodos , Biomarcadores/análisis , Bases de Datos Factuales , Diagnóstico por Imagen/métodos , Humanos , Sistemas de Atención de Punto
7.
Angew Chem Int Ed Engl ; 57(25): 7385-7389, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29637676

RESUMEN

The point-of-care testing concept has been exploited to design and develop portable and cheap bioanalytical systems that can be used on-site by conservators. These systems employ lateral flow immunoassays to simultaneously detect two proteins (ovalbumin and collagen) in artworks. For an in-depth study on the application of these portable biosensors, both chemiluminescent and colorimetric detections were developed and compared in terms of sensitivity and feasibility. The chemiluminescent system displayed the best analytical performance (that is, two orders of magnitude lower limits of detection than the colorimetric system). To simplify its use, a disposable cartridge was designed ad hoc for this specific application. These results highlight the enormous potential of these inexpensive, easy-to-use, and minimally invasive diagnostic tools for conservators in the cultural heritage field.


Asunto(s)
Arte , Técnicas Biosensibles , Cultura , Miniaturización , Colorimetría/instrumentación , Inmunoensayo , Límite de Detección , Luminiscencia , Sistemas de Atención de Punto
8.
Chemistry ; 22(50): 18156-18168, 2016 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-27798823

RESUMEN

Great interest in new thermochemiluminescent (TCL) molecules, for example, in bioanalytical assays, has prompted the design and synthesis of a small library of more than 30 olefins to be subjected to photooxygenation, with the aim of obtaining new 1,2-dioxetane-based TCL labels with optimized properties. Fluorine atoms on the acridan system remarkably stabilize 1,2-dioxetanes when they are located in the 3- and/or 6-position (4 h and 4 i). On the other hand, 2,7-difluorinated acridan dioxetane (4 j) showed a significantly enhanced fluorescence quantum yield with respect to the unsubstituted dioxetane (4 a). Some of the synthesized olefins did not undergo singlet oxygen addition and a rationale was sought to ease the photooxygenation step, leading to the TCL dioxetanes. A chemometric approach has been adopted to exploit principal component analysis and linear discriminant analysis of the structural and electronic molecular descriptors obtained by DFT optimizations of olefins 3. This approach allows the steric and electronic parameters that govern dioxetane formation to be revealed.

9.
Anal Bioanal Chem ; 408(26): 7367-77, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27520323

RESUMEN

An integrated sensing system is presented for the first time, where a metal oxide semiconductor sensor-based electronic olfactory system (MOS array), employed for pathogen bacteria identification based on their volatile organic compound (VOC) characterisation, is assisted by a preliminary separative technique based on gravitational field-flow fractionation (GrFFF). In the integrated system, a preliminary step using GrFFF fractionation of a complex sample provided bacteria-enriched fractions readily available for subsequent MOS array analysis. The MOS array signals were then analysed employing a chemometric approach using principal components analysis (PCA) for a first-data exploration, followed by linear discriminant analysis (LDA) as a classification tool, using the PCA scores as input variables. The ability of the GrFFF-MOS system to distinguish between viable and non-viable cells of the same strain was demonstrated for the first time, yielding 100 % ability of correct prediction. The integrated system was also applied as a proof of concept for multianalyte purposes, for the detection of two bacterial strains (Escherichia coli O157:H7 and Yersinia enterocolitica) simultaneously present in artificially contaminated milk samples, obtaining a 100 % ability of correct prediction. Acquired results show that GrFFF band slicing before MOS array analysis can significantly increase reliability and reproducibility of pathogen bacteria identification based on their VOC production, simplifying the analytical procedure and largely eliminating sample matrix effects. The developed GrFFF-MOS integrated system can be considered a simple straightforward approach for pathogen bacteria identification directly from their food matrix. Graphical abstract An integrated sensing system is presented for pathogen bacteria identification in food, in which field-flow fractionation is exploited to prepare enriched cell fractions prior to their analysis by electronic olfactory system analysis.


Asunto(s)
Nariz Electrónica , Escherichia coli O157/aislamiento & purificación , Análisis de los Alimentos/métodos , Fraccionamiento de Campo-Flujo/métodos , Compuestos Orgánicos Volátiles/análisis , Yersinia enterocolitica/aislamiento & purificación , Diseño de Equipo , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/citología , Análisis de los Alimentos/instrumentación , Microbiología de Alimentos/instrumentación , Microbiología de Alimentos/métodos , Fraccionamiento de Campo-Flujo/instrumentación , Humanos , Viabilidad Microbiana , Semiconductores , Yersiniosis/microbiología , Yersinia enterocolitica/citología
10.
Anal Bioanal Chem ; 408(30): 8869-8879, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27783125

RESUMEN

A novel and disposable cartridge for chemiluminescent (CL)-lateral flow immunoassay (LFIA) with integrated amorphous silicon (a-Si:H) photosensors array was developed and applied to quantitatively detect human serum albumin (HSA) in urine samples. The presented analytical method is based on an indirect competitive immunoassay using horseradish peroxidase (HRP) as a tracer, which is detected by adding the luminol/enhancer/hydrogen peroxide CL cocktail. The system comprises an array of a-Si:H photosensors deposited on a glass substrate, on which a PDMS cartridge that houses the LFIA strip and the reagents necessary for the CL immunoassay was optically coupled to obtain an integrated analytical device controlled by a portable read-out electronics. The method is simple and fast with a detection limit of 2.5 mg L-1 for HSA in urine and a dynamic range up to 850 mg L-1, which is suitable for measuring physiological levels of HSA in urine samples and their variation in different diseases (micro- and macroalbuminuria). The use of CL detection allowed accurate and objective analyte quantification in a dynamic range that extends from femtomoles to picomoles. The analytical performances of this integrated device were found to be comparable with those obtained using a charge-coupled device (CCD) as a reference off-chip detector. These results demonstrate that integrating the a-Si:H photosensors array with CL-LFIA technique provides compact, sensitive and low-cost systems for CL-based bioassays with a wide range of applications for in-field and point-of-care bioanalyses. Graphical Abstract A novel integrated portable device was developed for direct quantitative detection of human serum albumin (HSA) in urine samples, exploiting a chemiluminescence lateral flow immunoassay (LFIA). The device comprises a cartridge that holds the LFIA strip and all the reagents necessary for the analysis, an array of amorphous silicon photosensors, and a custom read-out electronics.


Asunto(s)
Albuminuria/orina , Inmunoensayo/métodos , Mediciones Luminiscentes/instrumentación , Albúmina Sérica Humana/orina , Silicio/química , Albuminuria/diagnóstico , Unión Competitiva , Diseño de Equipo , Peroxidasa de Rábano Silvestre/química , Humanos , Peróxido de Hidrógeno/química , Inmunoensayo/instrumentación , Límite de Detección , Luminol/química , Sistemas de Atención de Punto
11.
Chemistry ; 21(36): 12640-5, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26150130

RESUMEN

A carbon nanotube-based electrode that combines transparency and good conductivity was used for the first time to develop an electrochemiluminescence (ECL) device. It resulted in an excellent material for ECL applications thanks to the very favorable overpotential of amine oxidation that represents the rate-determining step for the signal generation in both research systems and commercial instrumentation. The use of carbon nanotubes resulted in a ten times higher emission efficiency compared with commercial transparent indium tin oxide (ITO) electrodes. Moreover, application of this material for proof-of-principle ECL imaging was demonstrated, in which micro-beads were used to mimic a real biological sample in order to prove the possibility of obtaining single cell visualization.

12.
Analyst ; 140(1): 358-65, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25374970

RESUMEN

A multiplex chemiluminescent biosensor for simple, rapid and ultrasensitive on-site quantification of aflatoxin B1 and type B-fumonisins in maize samples has been developed. The biosensor integrates a multiplex indirect competitive lateral flow immunoassay (LFIA) based on enzyme-catalyzed chemiluminescence detection and a highly sensitive portable charge-coupled device (CCD) camera, employed in a lensless "contact" imaging configuration. The developed assay requires a simple extraction of the analytes from maize flour samples followed by their detection with a 30 min assay time. The use of chemiluminescence detection allowed accurate and objective analytes quantification, enabling simultaneous detection of type B-fumonisins and aflatoxin B1 down to 6 µg kg(-1) and 1.5 µg kg(-1), respectively, thus fulfilling the standards imposed by the legislation of European Union. Maize flour samples spiked with both analytes were subjected to multiplex analysis obtaining recoveries ranging from 80 to 115% and the coefficient of variation below 20%. Finally, analysis of naturally contaminated maize samples resulted in a good agreement between CL-LFIA and a validated confirmatory HPLC-UV and commercial ELISA kit, obtaining recoveries in the range 88-120%. The proposed CL-LFIA protocol is rapid, inexpensive, easy-to-use, and fit for the purpose of rapid screening of mycotoxins in maize flour.


Asunto(s)
Aflatoxina B1/análisis , Técnicas Biosensibles , Harina/análisis , Fumonisinas/análisis , Luminiscencia , Zea mays/química
13.
Anal Bioanal Chem ; 407(6): 1567-76, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25542582

RESUMEN

Doped organically modified silica nanoparticles (ORMOSIL NPs) with luminescent molecules represent a potent approach to signal amplification in biomolecule labeling. Herein, we report the synthesis of new ORMOSIL NPs incorporating thermochemiluminescent (TCL) 1,2-dioxetane derivatives to prepare TCL labels for ultrasensitive immunoassay, displaying a detectability comparable to those offered by other conventional luminescence-based systems. Amino-functionalized ORMOSIL NPs were synthesized for inclusion of acridine-containing 1,2-dioxetane derivatives with a fluorescence energy acceptor. The doped ORMOSIL NPs were further functionalized with biotin for binding to streptavidin-labeled species to be used as universal detection reagents for immunoassays. A quantitative non-competitive immunoassay for streptavidin has been developed by immobilizing anti-streptavidin antibody to capture streptavidin, then the antibody-bound streptavidin was detected by the biotinylated TCL ORMOSIL NPs. The analytical performance was similar to that obtained by chemiluminescent (CL) detection using horseradish peroxidase (HRP) as label, being the limits of detection 2.5-3.8 and 0.8 ng mL(-1) for TCL and CL detection, respectively. In addition, since the TCL emission is simply initiated by thermolysis of the label, chemical reagents were not required, thus allowing reagentless detection with a simplification of the analytical protocols. A compact mini dark box device based on the use of a cooled charge-coupled device (CCD) and a miniaturized heater has been developed and used to quantify the light emission after heat decomposition of the label at a temperature of 90-120 °C. These characteristics make TCL-doped ORMOSIL NPs ideal universal nanoprobes for ultrasensitive bioassays such as immuno- and DNA-based assay.


Asunto(s)
Acridinas/química , Inmunoensayo/métodos , Nanopartículas , Dióxido de Silicio/química , Límite de Detección , Luminiscencia , Microscopía Electrónica de Transmisión , Temperatura
14.
Anal Bioanal Chem ; 406(23): 5645-56, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24965161

RESUMEN

We propose a disposable multiwell microcartridge with integrated amorphous silicon photosensors array for bio- and chemiluminescence-based bioassays, where the enzymatic reactions and the detection unit are coupled on the same glass substrate. Each well, made in a polydimethylsiloxane (PDMS) unit, hosts an enzymatic reaction that is monitored by one photosensor of the array. Photosensors were characterized in terms of their dark current background noise and response to different wavelengths of visible light in order to determine their suitability as detection devices for chemical luminescent phenomena. Calibration curves of the photosensors' response to different luminescent systems were then evaluated by using the chemiluminescent reactions catalyzed by alkaline phosphatase and horseradish peroxidase and the bioluminescent reaction catalyzed by firefly luciferase. Limits of detection in the order of attomoles for chemiluminescence enzymes and femtomoles for luciferase and sensitivities in the range between 0.007 and 0.1 pA pmol(-1) L were reached. We found that, without the need of cooling systems, the analytical performances of the proposed cartridge are comparable with those achievable with state-of-the-art thermoelectrically cooled charge-coupled device-based laboratory instrumentation. In addition, thanks to the small amount of generated output data, the proposed device allows the monitoring of long-lasting reactions with significant advantages in terms of data-storage needs, transmission bandwidth, ease of real-time signal processing and limited power consumption. Based on these results, the operation in model bioanalytical assays exploiting luminescent reactions was tested demonstrating that a-Si:H photosensors arrays, when integrated with PDMS microfluidic units, provide compact, sensitive and potentially low-cost microdevices for chemiluminescence and bioluminescence-based bioassays with a wide range of possible applications for in-field and point-of-care bio-analyses.


Asunto(s)
Bioensayo/instrumentación , Bioensayo/métodos , Mediciones Luminiscentes/instrumentación , Mediciones Luminiscentes/métodos , Silicio/química , Fosfatasa Alcalina/química , Peroxidasa de Rábano Silvestre/química
15.
Biosensors (Basel) ; 14(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38248406

RESUMEN

Wearable biosensors are attracting great interest thanks to their high potential for providing clinical-diagnostic information in real time, exploiting non-invasive sampling of biofluids. In this context, sweat has been demonstrated to contain physiologically relevant biomarkers, even if it has not been exhaustively exploited till now. This biofluid has started to gain attention thanks to the applications offered by wearable biosensors, as it is easily collectable and can be used for continuous monitoring of some parameters. Several studies have reported electrochemical and optical biosensing strategies integrated with flexible, biocompatible, and innovative materials as platforms for biospecific recognition reactions. Furthermore, sampling systems as well as the transport of fluids by microfluidics have been implemented into portable and compact biosensors to improve the wearability of the overall analytical device. In this review, we report and discuss recent pioneering works about the development of sweat sensing technologies, focusing on opportunities and open issues that can be decisive for their applications in routine-personalized healthcare practices.


Asunto(s)
Sudor , Dispositivos Electrónicos Vestibles , Microfluídica , Biomarcadores , Heces
16.
Biosensors (Basel) ; 14(2)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38391991

RESUMEN

One of the main challenges to be faced in deep space missions is to protect the health and ensure the maximum efficiency of the crew by preparing methods of prevention and in situ diagnosis. Indeed, the hostile environment causes important health problems, ranging from muscle atrophy, osteopenia, and immunological and metabolic alterations due to microgravity, to an increased risk of cancer caused by exposure to radiation. It is, therefore, necessary to provide new methods for the real-time measurement of biomarkers suitable for deepening our knowledge of the effects of space flight on the balance of the immune system and for allowing the monitoring of the astronaut's health during long-term missions. APHRODITE will enable human space exploration because it fills this void that affects both missions in LEO and future missions to the Moon and Mars. Its scientific objectives are the design, production, testing, and in-orbit demonstration of a compact, reusable, and reconfigurable system for performing the real-time analysis of oral fluid samples in manned space missions. In the frame of this project, a crew member onboard the ISS will employ APHRODITE to measure the selected target analytes, cortisol, and dehydroepiandrosterone sulfate (DHEA-S), in oral fluid, in four (plus one additional desired session) separate experiment sessions. The paper addresses the design of the main subsystems of the analytical device and the preliminary results obtained during the first implementations of the device subsystems and testing measurements on Earth. In particular, the system design and the experiment data output of the lab-on-chip photosensors and of the front-end readout electronics are reported in detail along with preliminary chemical tests for the duplex competitive CL-immunoassay for the simultaneous detection of cortisol and DHEA-S. Different applications also on Earth are envisaged for the APHRODITE device, as it will be suitable for point-of-care testing applications (e.g., emergency medicine, bioterrorism, diagnostics in developing countries, etc.).


Asunto(s)
Técnicas Biosensibles , Vuelo Espacial , Humanos , Hidrocortisona , Diseño de Equipo , Deshidroepiandrosterona
17.
J Org Chem ; 78(22): 11238-46, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24160842

RESUMEN

Thermochemiluminescence is the luminescence process in which a thermodynamically unstable molecule decomposes with light emission when heated above a threshold temperature. We recently reported the thermochemiluminescence properties of an acridine-containing 1,2-dioxetane, which emits at relatively low temperatures (i.e., below 100 °C). Herein, we explored the effect of the introduction of methyl substituents in the acridine system. The methyl group did not determine an excessive destabilization of 1,2-dioxetane ring nor significantly affect the general physical properties of the molecule. Monosubstituted methyl derivatives and a series of derivatives bearing several combinations of two, three, and four methyl groups were prepared. The rate of formation of 1,2-dioxetane derivatives 1b-k strongly depended on the methyl substitution pattern. All members of this library of mono-, di-, tri-, and tetramethyl-substituted derivatives were characterized in terms of photophysical and thermochemiluminescence properties. The introduction of methyl groups into the acridine ring caused a marked decrease in the activation energy of the thermochemiluminescent reaction. Tri- and tetramethyl-substituted acridones had the highest fluorescence quantum yields, in the range 0.48-0.52, and the corresponding 1,2-dioxetanes 1h and 1j showed in thermochemiluminescence imaging experiments limit of detection values more than ten times lower with respect to the unsubstituted derivative.


Asunto(s)
Acridinas/química , Bioensayo , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/síntesis química , Luminiscencia , Temperatura , Compuestos Heterocíclicos con 1 Anillo , Estructura Molecular , Espectrofotometría Ultravioleta
18.
Anal Bioanal Chem ; 405(2-3): 1139-43, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23187829

RESUMEN

A miniaturized multiplex biosensor exploiting a microfluidic oligonucleotide array and chemiluminescence (CL) lensless imaging detection has been developed for parvovirus B19 genotyping. The portable device consists of a reaction chip, comprising a glass slide arrayed with three B19 genotype-specific probes and coupled with a polydimethylsiloxane microfluidic layer, and a charge-coupled device camera modified for lensless CL imaging. Immobilized probes were used in DNA hybridization reactions with biotin-labeled targets, and then hybrids were measured by means of an avidin-horseradish peroxidase (HRP) conjugate and CL detection. All hybridization assay procedures have been optimized to be performed at room temperature through the microfluidic elements of the reaction chip, with sample and reagents delivery via capillary force exploiting adsorbent pads to drive fluids along the microchannels. The biosensor enabled multiplex detection of all B19 genotypes, with detectability down to 80 pmol L(-1) for all B19 genotype oligonucleotides and 650 pmol L(-1) for the amplified product of B19 genotype 1, which is comparable with that obtained in traditional PCR-ELISA formats and with notably shorter assay time (30 min vs. 2 h). The specificity of the assay has been evaluated by performing DNA-DNA hybridization reactions among sequences with different degrees of homology, and no cross hybridizations among B19 genotypes have been observed. The clinical applicability has been demonstrated by assaying amplified products obtained from B19 reference serum samples, with results completely consistent with the reference PCR-ELISA method. The next crucial step will be integration in the biosensor of a miniaturized PCR system for DNA amplification and for heat treatment of amplified products.


Asunto(s)
Técnicas Biosensibles/métodos , Mediciones Luminiscentes/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Infecciones por Parvoviridae/virología , Parvovirus B19 Humano/genética , Parvovirus B19 Humano/aislamiento & purificación , ADN Viral/genética , Genotipo , Humanos
19.
Anal Bioanal Chem ; 405(2-3): 941-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22960798

RESUMEN

Incorporation of exogenous analogues is a widely used method to evaluate DNA synthesis in cultured cells exposed to exogenous factors such as infectious agents. Herein, two new quantitative methodologies exploiting ultrasensitive chemiluminescence (CL) detection of 5-bromo-2'-deoxyuridine (BrdU) have been developed: a CL microscope imaging assay to evaluate BrdU labelling at single-cell level and a CL dot-blot assay to measure the amounts of DNA produced in the course of an in vitro infection of proliferating cells. The assays have been optimized on UT7/EpoS1 cells cultured in presence of different concentrations of BrdU (from 3 to 100 µM) and used to monitor parvovirus B19 (B19) life cycle in infected cells. The CL microscope imaging assay provided a detailed localization of BrdU-labelled nuclei allowing to count positive cells and measure their related CL intensity signals. The CL dot-blot assay, coupled with a B19 capture procedure performed with a specific peptide nucleic acid probe, has been designed to discriminate and selectively quantify cellular and viral BrdU-labelled genomes. Quantitative evaluation of BrdU-labelled B19 DNA has been achieved by means of a CL calibration curve. The high detectability, down to 2 × 10(6) B19 genome copies, and the linear range extending up to 5 × 10(8) copies make the method suitable to evaluate the amounts of B19 DNA produced throughout a replicative viral cycle.


Asunto(s)
ADN Viral/análisis , Mediciones Luminiscentes/métodos , Imagen Molecular/métodos , Infecciones por Parvoviridae/virología , Parvovirus B19 Humano/aislamiento & purificación , Bromodesoxiuridina/química , Línea Celular , ADN Viral/genética , Humanos , Infecciones por Parvoviridae/diagnóstico , Parvovirus B19 Humano/genética
20.
Biosens Bioelectron ; 227: 115146, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36821991

RESUMEN

Three-dimensional (3D) printed electrochemical devices are increasingly used in point-of-need and point-of-care testing. They show several advantages such as simple fabrication, low cost, fast response, and excellent selectivity and sensitivity in small sample volumes. However, there are only a few examples of analytical devices combining 3D-printed electrodes with electrochemiluminescence (ECL) detection, an electrochemical detection principle widely employed in clinical chemistry analysis. Herein, a portable, 3D-printed miniaturized ECL biosensor for glucose detection has been developed, based on the luminol/H2O2 ECL system and employing a two-electrode configuration with carbon black-doped polylactic acid (PLA) electrodes. The ECL emission is obtained by means of a 1.5V AA alkaline battery and detected using a smartphone camera, thus providing easy portability of the analytical platform. The ECL system was successfully applied for sensing H2O2 and, upon coupling the luminol/H2O2 system with the enzyme glucose oxidase, for glucose detection. The incorporation of luminol and glucose oxidase in an agarose hydrogel matrix allowed to produce ECL devices preloaded with the reagents required for the assay, so that the analysis only required sample addition. The ECL biosensor showed an excellent ability to detect glucose up to 5 mmol L-1, with a limit of detection of 60 µmol L-1. The biosensor was also used to analyse real samples (i.e., glucose saline solutions and artificial serum samples) with satisfactory results, thus suggesting its suitability for point-of-care analysis. Coupling with other oxidases could further extend the applicability of this analytical platform.


Asunto(s)
Técnicas Biosensibles , Glucosa , Glucosa/análisis , Luminol , Glucosa Oxidasa/metabolismo , Teléfono Inteligente , Peróxido de Hidrógeno , Mediciones Luminiscentes , Técnicas Biosensibles/métodos , Electrodos , Impresión Tridimensional , Técnicas Electroquímicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA