Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(3): 771-785.e12, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33125892

RESUMEN

Trained innate immunity, induced via modulation of mature myeloid cells or their bone marrow progenitors, mediates sustained increased responsiveness to secondary challenges. Here, we investigated whether anti-tumor immunity can be enhanced through induction of trained immunity. Pre-treatment of mice with ß-glucan, a fungal-derived prototypical agonist of trained immunity, resulted in diminished tumor growth. The anti-tumor effect of ß-glucan-induced trained immunity was associated with transcriptomic and epigenetic rewiring of granulopoiesis and neutrophil reprogramming toward an anti-tumor phenotype; this process required type I interferon signaling irrespective of adaptive immunity in the host. Adoptive transfer of neutrophils from ß-glucan-trained mice to naive recipients suppressed tumor growth in the latter in a ROS-dependent manner. Moreover, the anti-tumor effect of ß-glucan-induced trained granulopoiesis was transmissible by bone marrow transplantation to recipient naive mice. Our findings identify a novel and therapeutically relevant anti-tumor facet of trained immunity involving appropriate rewiring of granulopoiesis.


Asunto(s)
Granulocitos/inmunología , Inmunidad Innata , Neoplasias/inmunología , Inmunidad Adaptativa , Traslado Adoptivo , Animales , Epigénesis Genética , Interferón Tipo I/metabolismo , Ratones Endogámicos C57BL , Monocitos/metabolismo , Neoplasias/patología , Neutrófilos/metabolismo , Fenotipo , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/metabolismo , Transcripción Genética , Transcriptoma/genética , beta-Glucanos/metabolismo
2.
Cell ; 172(1-2): 147-161.e12, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29328910

RESUMEN

Trained innate immunity fosters a sustained favorable response of myeloid cells to a secondary challenge, despite their short lifespan in circulation. We thus hypothesized that trained immunity acts via modulation of hematopoietic stem and progenitor cells (HSPCs). Administration of ß-glucan (prototypical trained-immunity-inducing agonist) to mice induced expansion of progenitors of the myeloid lineage, which was associated with elevated signaling by innate immune mediators, such as IL-1ß and granulocyte-macrophage colony-stimulating factor (GM-CSF), and with adaptations in glucose metabolism and cholesterol biosynthesis. The trained-immunity-related increase in myelopoiesis resulted in a beneficial response to secondary LPS challenge and protection from chemotherapy-induced myelosuppression in mice. Therefore, modulation of myeloid progenitors in the bone marrow is an integral component of trained immunity, which to date, was considered to involve functional changes of mature myeloid cells in the periphery.


Asunto(s)
Inmunidad Innata , Memoria Inmunológica , Células Progenitoras Mieloides/inmunología , Animales , Células Cultivadas , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células Progenitoras Mieloides/efectos de los fármacos , Mielopoyesis/inmunología , beta-Glucanos/farmacología
3.
Circ Res ; 132(4): 400-414, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36715019

RESUMEN

BACKGROUND: Ventricular arrhythmia and sudden cardiac death are the most common lethal complications after myocardial infarction. Antiarrhythmic pharmacotherapy remains a clinical challenge and novel concepts are highly desired. Here, we focus on the cardioprotective CNP (C-type natriuretic peptide) as a novel antiarrhythmic principle. We hypothesize that antiarrhythmic effects of CNP are mediated by PDE2 (phosphodiesterase 2), which has the unique property to be stimulated by cGMP to primarily hydrolyze cAMP. Thus, CNP might promote beneficial effects of PDE2-mediated negative crosstalk between cAMP and cGMP signaling pathways. METHODS: To determine antiarrhythmic effects of cGMP-mediated PDE2 stimulation by CNP, we analyzed arrhythmic events and intracellular trigger mechanisms in mice in vivo, at organ level and in isolated cardiomyocytes as well as in human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS: In ex vivo perfused mouse hearts, CNP abrogated arrhythmia after ischemia/reperfusion injury. Upon high-dose catecholamine injections in mice, PDE2 inhibition prevented the antiarrhythmic effect of CNP. In mouse ventricular cardiomyocytes, CNP blunted the catecholamine-mediated increase in arrhythmogenic events as well as in ICaL, INaL, and Ca2+ spark frequency. Mechanistically, this was driven by reduced cellular cAMP levels and decreased phosphorylation of Ca2+ handling proteins. Key experiments were confirmed in human iPSC-derived cardiomyocytes. Accordingly, the protective CNP effects were reversed by either specific pharmacological PDE2 inhibition or cardiomyocyte-specific PDE2 deletion. CONCLUSIONS: CNP shows strong PDE2-dependent antiarrhythmic effects. Consequently, the CNP-PDE2 axis represents a novel and attractive target for future antiarrhythmic strategies.


Asunto(s)
Miocitos Cardíacos , Hidrolasas Diéster Fosfóricas , Ratones , Animales , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal , Catecolaminas/metabolismo , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/etiología , Arritmias Cardíacas/prevención & control , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Antiarrítmicos/metabolismo , GMP Cíclico/metabolismo , Péptido Natriurético Tipo-C/farmacología
4.
J Transl Med ; 21(1): 169, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869333

RESUMEN

BACKGROUND: Chemotherapy (CT) is central to the treatment of triple negative breast cancer (TNBC), but drug toxicity and resistance place strong restrictions on treatment regimes. Fasting sensitizes cancer cells to a range of chemotherapeutic agents and also ameliorates CT-associated adverse effects. However, the molecular mechanism(s) by which fasting, or short-term starvation (STS), improves the efficacy of CT is poorly characterized. METHODS: The differential responses of breast cancer or near normal cell lines to combined STS and CT were assessed by cellular viability and integrity assays (Hoechst and PI staining, MTT or H2DCFDA staining, immunofluorescence), metabolic profiling (Seahorse analysis, metabolomics), gene expression (quantitative real-time PCR) and iRNA-mediated silencing. The clinical significance of the in vitro data was evaluated by bioinformatical integration of transcriptomic data from patient data bases: The Cancer Genome Atlas (TCGA), European Genome-phenome Archive (EGA), Gene Expression Omnibus (GEO) and a TNBC cohort. We further examined the translatability of our findings in vivo by establishing a murine syngeneic orthotopic mammary tumor-bearing model. RESULTS: We provide mechanistic insights into how preconditioning with STS enhances the susceptibility of breast cancer cells to CT. We showed that combined STS and CT enhanced cell death and increased reactive oxygen species (ROS) levels, in association with higher levels of DNA damage and decreased mRNA levels for the NRF2 targets genes NQO1 and TXNRD1 in TNBC cells compared to near normal cells. ROS enhancement was associated with compromised mitochondrial respiration and changes in the metabolic profile, which have a significant clinical prognostic and predictive value. Furthermore, we validate the safety and efficacy of combined periodic hypocaloric diet and CT in a TNBC mouse model. CONCLUSIONS: Our in vitro, in vivo and clinical findings provide a robust rationale for clinical trials on the therapeutic benefit of short-term caloric restriction as an adjuvant to CT in triple breast cancer treatment.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Dieta Reductora , Especies Reactivas de Oxígeno , Obesidad
5.
Hepatology ; 75(4): 881-897, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34519101

RESUMEN

BACKGROUND AND AIMS: NAFLD is initiated by steatosis and can progress through fibrosis and cirrhosis to HCC. The RNA binding protein human antigen R (HuR) controls RNAs at the posttranscriptional level; hepatocyte HuR has been implicated in the regulation of diet-induced hepatic steatosis. The present study aimed to understand the role of hepatocyte HuR in NAFLD development and progression to fibrosis and HCC. APPROACH AND RESULTS: Hepatocyte-specific, HuR-deficient mice and control HuR-sufficient mice were fed either a normal diet or an NAFLD-inducing diet. Hepatic lipid accumulation, inflammation, fibrosis, and HCC development were studied by histology, flow cytometry, quantitative PCR, and RNA sequencing. The liver lipidome was characterized by lipidomics analysis, and the HuR-RNA interactions in the liver were mapped by RNA immunoprecipitation sequencing. Hepatocyte-specific, HuR-deficient mice displayed spontaneous hepatic steatosis and fibrosis predisposition compared to control HuR-sufficient mice. On an NAFLD-inducing diet, hepatocyte-specific HuR deficiency resulted in exacerbated inflammation, fibrosis, and HCC-like tumor development. A multi-omic approach, including lipidomics, transcriptomics, and RNA immunoprecipitation sequencing revealed that HuR orchestrates a protective network of hepatic-metabolic and lipid homeostasis-maintaining pathways. Consistently, HuR-deficient livers accumulated, already at steady state, a triglyceride signature resembling that of NAFLD livers. Moreover, up-regulation of secreted phosphoprotein 1 expression mediated, at least partially, fibrosis development in hepatocyte-specific HuR deficiency on an NAFLD-inducing diet, as shown by experiments using antibody blockade of osteopontin. CONCLUSIONS: HuR is a gatekeeper of liver homeostasis, preventing NAFLD-related fibrosis and HCC, suggesting that the HuR-dependent network could be exploited therapeutically.


Asunto(s)
Carcinoma Hepatocelular , Proteína 1 Similar a ELAV , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Animales , Carcinoma Hepatocelular/patología , Proteína 1 Similar a ELAV/metabolismo , Homeostasis , Inflamación/metabolismo , Hígado/patología , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología , ARN , Triglicéridos/metabolismo
6.
FASEB J ; 35(3): e21425, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33566443

RESUMEN

Histamine-induced vascular leakage is a core process of allergic pathologies, including anaphylaxis. Here, we show that glycolysis is integral to histamine-induced endothelial barrier disruption and hyperpermeability. Histamine rapidly enhanced glycolysis in endothelial cells via a pathway that involved histamine receptor 1 and phospholipase C beta signaling. Consistently, partial inhibition of glycolysis with 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) prevented histamine-induced hyperpermeability in human microvascular endothelial cells, by abolishing the histamine-induced actomyosin contraction, focal adherens junction formation, and endothelial barrier disruption. Pharmacologic blockade of glycolysis with 3PO in mice reduced histamine-induced vascular hyperpermeability, prevented vascular leakage in passive cutaneous anaphylaxis and protected from systemic anaphylaxis. In conclusion, we elucidated the role of glycolysis in histamine-induced disruption of endothelial barrier integrity. Our data thereby point to endothelial glycolysis as a novel therapeutic target for human pathologies related to excessive vascular leakage, such as systemic anaphylaxis.


Asunto(s)
Permeabilidad Capilar/fisiología , Células Endoteliales/efectos de los fármacos , Glucólisis/fisiología , Histamina/farmacología , Uniones Adherentes/efectos de los fármacos , Uniones Adherentes/metabolismo , Anafilaxia/metabolismo , Anafilaxia/patología , Animales , Permeabilidad Capilar/efectos de los fármacos , Células Endoteliales/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Ratones , Fosfolipasa C beta/metabolismo , Transducción de Señal/efectos de los fármacos
7.
Nature ; 522(7557): 444-449, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26083752

RESUMEN

Fructose is a major component of dietary sugar and its overconsumption exacerbates key pathological features of metabolic syndrome. The central fructose-metabolising enzyme is ketohexokinase (KHK), which exists in two isoforms: KHK-A and KHK-C, generated through mutually exclusive alternative splicing of KHK pre-mRNAs. KHK-C displays superior affinity for fructose compared with KHK-A and is produced primarily in the liver, thus restricting fructose metabolism almost exclusively to this organ. Here we show that myocardial hypoxia actuates fructose metabolism in human and mouse models of pathological cardiac hypertrophy through hypoxia-inducible factor 1α (HIF1α) activation of SF3B1 and SF3B1-mediated splice switching of KHK-A to KHK-C. Heart-specific depletion of SF3B1 or genetic ablation of Khk, but not Khk-A alone, in mice, suppresses pathological stress-induced fructose metabolism, growth and contractile dysfunction, thus defining signalling components and molecular underpinnings of a fructose metabolism regulatory system crucial for pathological growth.


Asunto(s)
Cardiomiopatía Hipertrófica/metabolismo , Fructoquinasas/metabolismo , Fructosa/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Fosfoproteínas/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Empalme Alternativo , Animales , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/patología , Cardiomiopatía Hipertrófica/fisiopatología , Modelos Animales de Enfermedad , Fructoquinasas/deficiencia , Fructoquinasas/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Isoenzimas/deficiencia , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Síndrome Metabólico/metabolismo , Ratones , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Factores de Empalme de ARN , Ribonucleoproteína Nuclear Pequeña U2/deficiencia , Ribonucleoproteína Nuclear Pequeña U2/genética
8.
Circulation ; 139(24): 2778-2792, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-30922078

RESUMEN

BACKGROUND: Enhancers are genomic regulatory elements conferring spatiotemporal and signal-dependent control of gene expression. Recent evidence suggests that enhancers can generate noncoding enhancer RNAs, but their (patho)biological functions remain largely elusive. METHODS: We performed chromatin immunoprecipitation-coupled sequencing of histone marks combined with RNA sequencing of left ventricular biopsies from experimental and genetic mouse models of human cardiac hypertrophy to identify transcripts revealing enhancer localization, conservation with the human genome, and hypoxia-inducible factor 1α dependence. The most promising candidate, hypoxia-inducible enhancer RNA ( HERNA)1, was further examined by investigating its capacity to modulate neighboring coding gene expression by binding to their gene promoters by using chromatin isolation by RNA purification and λN-BoxB tethering-based reporter assays. The role of HERNA1 and its neighboring genes for pathological stress-induced growth and contractile dysfunction, and the therapeutic potential of HERNA1 inhibition was studied in gapmer-mediated loss-of-function studies in vitro using human induced pluripotent stem cell-derived cardiomyocytes and various in vivo models of human pathological cardiac hypertrophy. RESULTS: HERNA1 is robustly induced on pathological stress. Production of HERNA1 is initiated by direct hypoxia-inducible factor 1α binding to a hypoxia-response element in the histoneH3-lysine27acetylation marks-enriched promoter of the enhancer and confers hypoxia responsiveness to nearby genes including synaptotagmin XVII, a member of the family of membrane-trafficking and Ca2+-sensing proteins and SMG1, encoding a phosphatidylinositol 3-kinase-related kinase. Consequently, a substrate of SMG1, ATP-dependent RNA helicase upframeshift 1, is hyperphoshorylated in a HERNA1- and SMG1-dependent manner. In vitro and in vivo inactivation of SMG1 and SYT17 revealed overlapping and distinct roles in modulating cardiac hypertrophy. Finally, in vivo administration of antisense oligonucleotides targeting HERNA1 protected mice from stress-induced pathological hypertrophy. The inhibition of HERNA1 postdisease development reversed left ventricular growth and dysfunction, resulting in increased overall survival. CONCLUSIONS: HERNA1 is a novel heart-specific noncoding RNA with key regulatory functions in modulating the growth, metabolic, and contractile gene program in disease, and reveals a molecular target amenable to therapeutic exploitation.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/prevención & control , Cardiomiopatía Hipertrófica/prevención & control , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Miocitos Cardíacos/metabolismo , Oligonucleótidos Antisentido/administración & dosificación , ARN no Traducido/metabolismo , Animales , Sitios de Unión , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/patología , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/deficiencia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología , Regiones Promotoras Genéticas , ARN no Traducido/genética , Transducción de Señal , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
9.
Exp Cell Res ; 377(1-2): 10-16, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30817930

RESUMEN

Microglia, the parenchymal immune cells of the central nervous system, orchestrate neuroinflammation in response to infection or damage, and promote tissue repair. However, aberrant microglial responses are integral to neurodegenerative diseases and critically contribute to disease progression. Thus, it is important to elucidate how microglia - mediated neuroinflammation is regulated by endogenous factors. Here, we explored the effect of Nerve Growth Factor (NGF), an abundant neurotrophin, on microglial inflammatory responses. NGF, via its high affinity receptor TrkA, downregulated LPS - induced production of pro-inflammatory cytokines and NO in primary mouse microglia and inhibited TLR4 - mediated activation of the NF-κB and JNK pathways. Furthermore, NGF attenuated the LPS - enhanced glycolytic activity in microglia, as suggested by reduced glucose uptake and decreased expression of the glycolytic enzymes Pfkß3 and Ldhα. Consistently, 2DG - mediated glycolysis inhibition strongly downregulated LPS - induced cytokine production in microglial cells. Our findings demonstrate that NGF attenuates pro-inflammatory responses in microglia and may thereby contribute to regulation of microglia - mediated neuroinflammation.


Asunto(s)
Glucólisis/efectos de los fármacos , Inflamación/tratamiento farmacológico , Lipopolisacáridos/toxicidad , Microglía/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Animales , Citocinas/genética , Citocinas/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/patología , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal
10.
Genes Dev ; 26(3): 259-70, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22302938

RESUMEN

Dietary obesity is a major factor in the development of type 2 diabetes and is associated with intra-adipose tissue hypoxia and activation of hypoxia-inducible factor 1α (HIF1α). Here we report that, in mice, Hif1α activation in visceral white adipocytes is critical to maintain dietary obesity and associated pathologies, including glucose intolerance, insulin resistance, and cardiomyopathy. This function of Hif1α is linked to its capacity to suppress ß-oxidation, in part, through transcriptional repression of sirtuin 2 (Sirt2) NAD(+)-dependent deacetylase. Reduced Sirt2 function directly translates into diminished deacetylation of PPARγ coactivator 1α (Pgc1α) and expression of ß-oxidation and mitochondrial genes. Importantly, visceral adipose tissue from human obese subjects is characterized by high levels of HIF1α and low levels of SIRT2. Thus, by negatively regulating the Sirt2-Pgc1α regulatory axis, Hif1α negates adipocyte-intrinsic pathways of fatty acid catabolism, thereby creating a metabolic state supporting the development of obesity.


Asunto(s)
Adipocitos/metabolismo , Metabolismo Energético , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , NAD/metabolismo , Obesidad/patología , Sirtuina 2/metabolismo , Acetilación , Adipocitos/citología , Animales , Secuencia de Bases , Diferenciación Celular , Células Cultivadas , Dieta , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Oxidación-Reducción , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Alineación de Secuencia , Sirtuina 2/genética , Transactivadores/metabolismo , Factores de Transcripción
11.
Eur Heart J ; 39(26): 2497-2505, 2018 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-29020416

RESUMEN

Despite strong indications that increased consumption of added sugars correlates with greater risks of developing cardiometabolic syndrome (CMS) and cardiovascular disease (CVD), independent of the caloric intake, the worldwide sugar consumption remains high. In considering the negative health impact of overconsumption of dietary sugars, increased attention is recently being given to the role of the fructose component of high-sugar foods in driving CMS. The primary organs capable of metabolizing fructose include liver, small intestine, and kidneys. In these organs, fructose metabolism is initiated by ketohexokinase (KHK) isoform C of the central fructose-metabolizing enzyme KHK. Emerging data suggest that this tissue restriction of fructose metabolism can be rescinded in oxygen-deprived environments. In this review, we highlight recent progress in understanding how fructose metabolism contributes to the development of major systemic pathologies that cooperatively promote CMS and CVD, reference recent insights into microenvironmental control of fructose metabolism under stress conditions and discuss how this understanding is shaping preventive actions and therapeutic approaches.


Asunto(s)
Enfermedad de la Arteria Coronaria/metabolismo , Fructosa/metabolismo , Hipoxia/metabolismo , Hígado/metabolismo , Síndrome Metabólico/metabolismo , Enfermedad de la Arteria Coronaria/epidemiología , Sacarosa en la Dieta , Epidemias , Fructoquinasas/metabolismo , Humanos , Intestino Delgado/metabolismo , Riñón/metabolismo , Metabolismo de los Lípidos , Síndrome Metabólico/epidemiología , Isoformas de Proteínas
12.
Biochim Biophys Acta ; 1863(7 Pt B): 1822-8, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26896647

RESUMEN

Pathologic cardiac growth is an adaptive response of the myocardium to various forms of systemic (e.g. pressure overload) or genetically-based (e. g. mutations in genes encoding sarcomeric proteins) stress. It represents a key aspect of different types of heart disease including aortic stenosis (AS) and hypertrophic cardiomyopathy (HCM). While many of the pathophysiological and hemodynamical aspects of pathologic cardiac hypertrophy have been uncovered during the last decades, its underlying metabolic determinants are only beginning to come into focus. Here, we review the epidemiological evidence and pathological features of hypertrophic heart disease in AS and HCM and consider in this context the development of microenvironmental tissue hypoxia as a key component of the heart's growth response to pathologic stress. We particularly reflect on recent evidence illustrating how activation of hypoxia-inducible factor (HIF) drives glycolytic and fructolytic metabolic programs to maintain ATP generation and support anabolic growth of the pathologically-stressed heart. Finally we discuss how this metabolic programs, when protracted, deprive the heart of energy leading ultimately to heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.


Asunto(s)
Cardiomegalia/metabolismo , Microambiente Celular , Fructosa/metabolismo , Glucólisis , Miocardio/metabolismo , Adaptación Fisiológica , Adenosina Trifosfato/metabolismo , Animales , Cardiomegalia/epidemiología , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Hipoxia de la Célula , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Miocardio/patología , Factores de Riesgo , Transducción de Señal , Estrés Fisiológico
13.
Artículo en Alemán | MEDLINE | ID: mdl-26023762

RESUMEN

Heart failure is a common disease which is associated with an increased perioperative risk. In the following, we summarize pathophysiology, momentary treatment options and a preoperative approach to patients with heart failure.


Asunto(s)
Anestesia General/normas , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/prevención & control , Monitoreo Intraoperatorio/normas , Complicaciones Posoperatorias/prevención & control , Cuidados Preoperatorios/normas , Alemania , Humanos , Complicaciones Posoperatorias/diagnóstico , Guías de Práctica Clínica como Asunto
14.
Nat Commun ; 15(1): 1534, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378748

RESUMEN

Myotonic dystrophy type 2 (DM2) is a tetranucleotide CCTG repeat expansion disease associated with an increased prevalence of autoimmunity. Here, we identified an elevated type I interferon (IFN) signature in peripheral blood mononuclear cells and primary fibroblasts of DM2 patients as a trigger of chronic immune stimulation. Although RNA-repeat accumulation was prevalent in the cytosol of DM2-patient fibroblasts, type-I IFN release did not depend on innate RNA immune sensors but rather the DNA sensor cGAS and the prevalence of mitochondrial DNA (mtDNA) in the cytoplasm. Sublethal mtDNA release was promoted by a chronic activation of the ATF6 branch of the unfolded protein response (UPR) in reaction to RNA-repeat accumulation and non-AUG translated tetrapeptide expansion proteins. ATF6-dependent mtDNA release and resulting cGAS/STING activation could also be recapitulated in human THP-1 monocytes exposed to chronic endoplasmic reticulum (ER) stress. Altogether, our study demonstrates a novel mechanism by which large repeat expansions cause chronic endoplasmic reticulum stress and associated mtDNA leakage. This mtDNA is, in turn, sensed by the cGAS/STING pathway and induces a type-I IFN response predisposing to autoimmunity. Elucidating this pathway reveals new potential therapeutic targets for autoimmune disorders associated with repeat expansion diseases.


Asunto(s)
Enfermedades Autoinmunes , Interferón Tipo I , Distrofia Miotónica , Humanos , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , ADN Mitocondrial/genética , Autoinmunidad/genética , Leucocitos Mononucleares/metabolismo , ARN , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Estrés del Retículo Endoplásmico/genética
15.
Anesth Analg ; 116(1): 83-92, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23223114

RESUMEN

BACKGROUND: Mechanisms of local anesthetic cardiac toxicity are still not completely understood. In this study, we analyzed whether concentrations of local anesthetics found in clinical toxicity affect myocardial mitochondrial structure and oxygen consumption. METHODS: Guinea pig isolated heart Langendorff preparations were exposed to bupivacaine (3.0 and 7.5 µg/mL) and ropivacaine (3.6 and 9.0 µg/mL) for 10 minutes. Heart rate, systolic blood pressure, the first derivative of left ventricular pressure (+dP/dt), electrocardiogram, and coronary flow were recorded. The local anesthetic tissue concentration was measured either immediately after local anesthetic exposure, or after 20- and 60-minute washout periods. In addition, electron microscopy of myocardial mitochondria was performed using a scoring system for structural damage of mitochondria. Cardiomyocyte cell culture was incubated with bupivacaine, and oxygen consumption ratio, extracellular acidification, and relative amounts of PGC-1α mRNA, a regulator of cellular energy metabolism, were determined. RESULTS: Bupivacaine and ropivacaine induced reversible PR interval and QRS prolongation, and left ventricular pressure and +dP/dt reduction. Myocardial tissue concentration of local anesthetics was 3-fold the arterial concentration. Mitochondria showed a significant concentration-dependent morphological swelling after local anesthetic application. These changes were reversed by a 20-minute washout period for ropivacaine and by a 60-minute washout for bupivacaine. Bupivacaine reduced mitochondrial oxygen consumption and increased PGC-1α expression in neonatal cardiomyocyte cell cultures, whereas fatty acid metabolism remained unaffected. CONCLUSIONS: Bupivacaine and ropivacaine accumulate in the myocardium. Reversible local anesthetic-induced mitochondrial swelling occurs at concentrations that induce a negative inotropic effect. Bupivacaine reduces cellular metabolism, whereas this reduction is reversible by fatty acids. Interaction with mitochondria may contribute to the negative inotropic effect of local anesthetics.


Asunto(s)
Amidas/efectos adversos , Amidas/metabolismo , Anestésicos Locales/efectos adversos , Anestésicos Locales/metabolismo , Bupivacaína/efectos adversos , Bupivacaína/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Miocardio/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Circulación Coronaria/efectos de los fármacos , Circulación Coronaria/fisiología , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Cobayas , Ratones , Microscopía Electrónica de Transmisión , Miocitos Cardíacos/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ropivacaína , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Transactivadores/metabolismo , Factores de Transcripción , Regulación hacia Arriba/efectos de los fármacos
16.
Redox Biol ; 60: 102616, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36746004

RESUMEN

OBJECTIVE: Rheumatoid arthritis is an inflammatory joint disease in which synovial iron deposition has been described. Transferrin receptor 2 (Tfr2) represents a critical regulator of systemic iron levels. Loss of Tfr2 function in humans and mice results in iron overload. As iron contributes to inflammatory processes, we investigated whether Tfr2-deletion affects the pathogenesis of inflammatory arthritis in an iron-dependent manner. METHODS: Using a global and conditional genetic disruption of Tfr2, we assessed the relevance of Tfr2 in K/BxN serum-transfer arthritis (STA) and macrophage polarization. RESULTS: Male Tfr2-/- mice subjected to STA developed pronounced joint swelling, and bone erosion as compared to Tfr2+/+ littermate-controls (P < 0.01). Furthermore, an increase of neutrophils and macrophages/monocytes was observed in the inflammatory infiltrate within the paws of Tfr2-/- mice. To elucidate whether Tfr2 in myeloid cells has a direct role in the pathogenesis of arthritis or whether the effects were mediated via the systemic iron overload, we induced STA in Tfr2fl/fl-LysMCre + mice, which showed normal iron-loading. Cre + female mice displayed increased disease development compared to Cre-controls. As macrophages regulate iron availability and innate immunity, we hypothesized that Tfr2-deficiency would polarize macrophages toward a pro-inflammatory state (M1) that contributes to arthritis progression. In response to IFN-γ stimulation, Tfr2-/- macrophages showed increased expression of M1-like cytokines, IFN-γ-target genes, nitric-oxide production, and prolonged STAT1 activation compared to Tfr2+/+ macrophages (P < 0.01), while pre-treatment with ruxolitinib abolished Tfr2-driven M1-like polarization. CONCLUSION: Taken together, these findings suggest a protective role of Tfr2 in macrophages on the progression of arthritis via suppression of M1-like polarization.


Asunto(s)
Artritis , Sobrecarga de Hierro , Humanos , Ratones , Masculino , Femenino , Animales , Ratones Noqueados , Hierro/metabolismo , Sobrecarga de Hierro/patología , Macrófagos/metabolismo , Artritis/metabolismo , Receptores de Transferrina/genética
17.
NPJ Precis Oncol ; 7(1): 104, 2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838778

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) responds poorly to systemic treatment, including new immunotherapeutic approaches. Biomarkers are urgently needed for early disease detection, patient stratification for treatment, and response prediction. The role of soluble CD40 (sCD40) is unknown in PDAC. In this study, we performed a quantitative multiplex analysis of 17 immune checkpoint proteins in serum samples from patients with various stages of PDAC in a discovery study (n = 107) and analyzed sCD40 by ELISA in a validation study (n = 317). Youden's J statistic was used for diagnostic cut-off optimization. A Cox proportional hazards regression model was applied in an empiric approach for prognostic threshold optimization. Kaplan-Meier estimator and multivariable Cox regression analyses were used for survival analysis. sCD40 was significantly increased in the serum of patients with PDAC compared to healthy cohorts and patients with IPMN. In the validation cohort, the area under the receiver operating characteristic (ROC) c-statistic was 0.8, and combining sCD40 with CA19-9 yielded a c-statistic of 0.95. sCD40 levels were independent of the tumor stage. However, patients who received neoadjuvant chemotherapy had significantly lower sCD40 levels than those who underwent upfront surgery. Patients with a sCD40 level above the empirical threshold of 0.83 ng/ml had a significantly reduced overall survival with a hazard ratio of 1.4. This observation was pronounced in patients after neoadjuvant chemotherapy. Collectively, soluble CD40 may be considered as both a diagnostic and prognostic non-invasive biomarker in PDAC.

18.
J Cachexia Sarcopenia Muscle ; 14(1): 298-309, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36418015

RESUMEN

BACKGROUND: The detrimental impact of malnutrition and cachexia in cancer patients subjected to surgical resection is well established. However, how systemic and local metabolic alterations in cancer patients impact the serum metabolite signature, thereby leading to cancer-specific differences, is poorly defined. In order to implement metabolomics as a potential tool in clinical diagnostics and disease follow-up, targeted metabolite profiling based on quantitative measurements is essential. We hypothesized that the quantitative metabolic profile assessed by 1 H nuclear magnetic resonance (NMR) spectroscopy can be used to identify cancer-induced catabolism and potentially distinguish between specific tumour entities. Importantly, to prove tumour dependency and assess metabolic normalization, we additionally analysed the metabolome of patients' sera longitudinally post-surgery in order to assess metabolic normalization. METHODS: Forty two metabolites in sera of patients with tumour entities known to cause malnutrition and cachexia, namely, upper gastrointestinal cancer and pancreatic cancer, as well as sera of healthy controls, were quantified by 1 H NMR spectroscopy. RESULTS: Comparing serum metabolites of patients with gastrointestinal cancer with healthy controls and pancreatic cancer patients, we identified at least 15 significantly changed metabolites in each comparison. Principal component and pathway analysis tools showed a catabolic signature in preoperative upper gastrointestinal cancer patients. The most specifically upregulated metabolite group in gastrointestinal cancer patients was ketone bodies (3-hydroxybutyrate, P < 0.0001; acetoacetate, P < 0.0001; acetone, P < 0.0001; false discovery rate [FDR] adjusted). Increased glycerol levels (P < 0.0001), increased concentration of the ketogenic amino acid lysine (P = 0.03) and a significant correlation of 3-hydroxybutyrate levels with branched-chained amino acids (leucine, P = 0.02; isoleucine, P = 0.04 [FDR adjusted]) suggested that ketone body synthesis was driven by lipolysis and amino acid breakdown. Interestingly, the catabolic signature was independent of the body mass index, clinically assessed malnutrition using the nutritional risk screening score, and systemic inflammation assessed by CRP and leukocyte count. Longitudinal measurements and principal component analyses revealed a quick normalization of key metabolic alterations seven days post-surgery, including ketosis. CONCLUSIONS: Together, the quantitative metabolic profile obtained by 1 H NMR spectroscopy identified a tumour-induced catabolic signature specific to upper gastrointestinal cancer patients and enabled monitoring restoration of metabolic homeostasis after surgery. This approach was critical to identify the obtained metabolic profile as an upper gastrointestinal cancer-specific signature independent of malnutrition and inflammation.


Asunto(s)
Neoplasias Gastrointestinales , Desnutrición , Neoplasias Pancreáticas , Humanos , Ácido 3-Hidroxibutírico , Caquexia/etiología , Caquexia/metabolismo , Neoplasias Gastrointestinales/complicaciones , Neoplasias Gastrointestinales/metabolismo , Inflamación/metabolismo , Leucina , Desnutrición/etiología , Desnutrición/metabolismo , Neoplasias Pancreáticas/metabolismo , Metabolómica
19.
Sci Adv ; 9(29): eadf6710, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37478183

RESUMEN

Corticosteroids regulate vital processes, including stress responses, systemic metabolism, and blood pressure. Here, we show that corticosteroid synthesis is related to the polyunsaturated fatty acid (PUFA) content of mitochondrial phospholipids in adrenocortical cells. Inhibition of the rate-limiting enzyme of PUFA synthesis, fatty acid desaturase 2 (FADS2), leads to perturbations in the mitochondrial lipidome and diminishes steroidogenesis. Consistently, the adrenocortical mitochondria of Fads2-/- mice fed a diet with low PUFA concentration are structurally impaired and corticoid levels are decreased. On the contrary, FADS2 expression is elevated in the adrenal cortex of obese mice, and plasma corticosterone is increased, which can be counteracted by dietary supplementation with the FADS2 inhibitor SC-26192 or icosapent ethyl, an eicosapentaenoic acid ethyl ester. In humans, FADS2 expression is elevated in aldosterone-producing adenomas compared to non-active adenomas or nontumorous adrenocortical tissue and correlates with expression of steroidogenic genes. Our data demonstrate that FADS2-mediated PUFA synthesis determines adrenocortical steroidogenesis in health and disease.


Asunto(s)
Adenoma , Ácido Graso Desaturasas , Humanos , Ratones , Animales , Ácido Graso Desaturasas/genética , Lipidómica , Ácidos Grasos Insaturados/metabolismo , Glándulas Suprarrenales/metabolismo
20.
Lancet Diabetes Endocrinol ; 11(9): 675-693, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37524103

RESUMEN

Viruses have been present during all evolutionary steps on earth and have had a major effect on human history. Viral infections are still among the leading causes of death. Another public health concern is the increase of non-communicable metabolic diseases in the last four decades. In this Review, we revisit the scientific evidence supporting the presence of a strong bidirectional feedback loop between several viral infections and metabolic diseases. We discuss how viruses might lead to the development or progression of metabolic diseases and conversely, how metabolic diseases might increase the severity of a viral infection. Furthermore, we discuss the clinical relevance of the current evidence on the relationship between viral infections and metabolic disease and the present and future challenges that should be addressed by the scientific community and health authorities.


Asunto(s)
Enfermedades Metabólicas , Virosis , Humanos , Relevancia Clínica , Virosis/complicaciones , Enfermedades Metabólicas/epidemiología , Salud Pública
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA