Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37569633

RESUMEN

Immune cells such as T cells and macrophages express α7 nicotinic acetylcholine receptors (α7 nAChRs), which contribute to the regulation of immune and inflammatory responses. Earlier findings suggest α7 nAChR activation promotes the development of regulatory T cells (Tregs) in mice. Using human CD4+ T cells, we investigated the mRNA expression of the α7 subunit and the human-specific dupα7 nAChR subunit, which functions as a dominant-negative regulator of ion channel function, under resting conditions and T cell receptor (TCR)-activation. We then explored the effects of the selective α7 nAChR agonist GTS-21 on proliferation of TCR-activated T cells and Treg development. Varied levels of mRNA for both the α7 and dupα7 nAChR subunits were detected in resting human CD4+ T cells. mRNA expression of the α7 nAChR subunit was profoundly suppressed on days 4 and 7 of TCR-activation as compared to day 1, whereas mRNA expression of the dupα7 nAChR subunit remained nearly constant. GTS-21 did not alter CD4+ T cell proliferation but significantly promoted Treg development. These results suggest the potential ex vivo utility of GTS-21 for preparing Tregs for adoptive immunotherapy, even with high expression of the dupα7 subunit.

2.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38203488

RESUMEN

According to numerous studies, it has been epidemiologically suggested that habitual coffee intake seems to prevent the onset of neurodegenerative diseases. In this study, we hypothesized that coffee consumption suppresses neuroinflammation, which is closely related to the development of neurodegenerative diseases. Using microglial BV-2 cells, we first found that the inflammatory responses induced by lipopolysaccharide (LPS) stimulation was diminished by both coffee and decaffeinated coffee through the inhibition of an inflammation-related transcription factor, nuclear factor-κB (NF-κB). Pyrocatechol, a component of roasted coffee produced by the thermal decomposition of chlorogenic acid, also exhibited anti-inflammatory activity by inhibiting the LPS-induced activation of NF-κB. Finally, in an inflammation model using mice injected with LPS into the cerebrum, we observed that intake of pyrocatechol as well as coffee decoctions drastically suppressed the accumulation of microglia and the expression of interleukin-6 (IL-6), tumor necrosis factor α (TNFα), CCL2, and CXCL1 in the inflammatory brain. These observations strongly encourage us to hypothesize that the anti-inflammatory activity of pyrocatechol as well as coffee decoction would be useful for the suppression of neurodegeneration and the prevention of the onsets of Alzheimer's (AD) and Perkinson's diseases (PD).


Asunto(s)
FN-kappa B , Enfermedades Neurodegenerativas , Animales , Ratones , Enfermedades Neuroinflamatorias , Café , Microglía , Lipopolisacáridos/toxicidad , Inflamación/tratamiento farmacológico , Catecoles/farmacología , Antiinflamatorios/farmacología
3.
Biochem Biophys Res Commun ; 618: 61-66, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-35716596

RESUMEN

Lysophosphatidic acid (LPA) is a bioactive compound known to regulate various vascular functions. However, despite the fact that many vascular functions are regulated by peri-vascular cells such as pericytes, the effect of LPA on brain pericytes has not been fully evaluated. Thus, we designed this study to evaluate the effects of LPA on brain pericytes. These experiments revealed that while LPA receptors (LPARs) are expressed in cultured pericytes from mouse brains, LPA treatment does not influence the proliferation of these cells but does have a profound impact on their migration, which is regulated via the expression of LPAR1. LPAR1 expression was also detected in human pericyte culture and LPA treatment of these cells also induced migration. Taken together these findings imply that LPA-LPAR1 signaling is one of the key mechanisms modulating pericyte migration, which may help to control vascular function during development and repair processes.


Asunto(s)
Lisofosfolípidos , Pericitos , Receptores del Ácido Lisofosfatídico , Animales , Movimiento Celular , Lisofosfolípidos/farmacología , Ratones , Pericitos/efectos de los fármacos , Pericitos/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo
4.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202925

RESUMEN

Acetylcholine (ACh) is the classical neurotransmitter in the cholinergic nervous system. However, ACh is now known to regulate various immune cell functions. In fact, T cells, B cells, and macrophages all express components of the cholinergic system, including ACh, muscarinic, and nicotinic ACh receptors (mAChRs and nAChRs), choline acetyltransferase, acetylcholinesterase, and choline transporters. In this review, we will discuss the actions of ACh in the immune system. We will first briefly describe the mechanisms by which ACh is stored in and released from immune cells. We will then address Ca2+ signaling pathways activated via mAChRs and nAChRs on T cells and B cells, highlighting the importance of ACh for the function of T cells, B cells, and macrophages, as well as its impact on innate and acquired (cellular and humoral) immunity. Lastly, we will discuss the effects of two peptide ligands, secreted lymphocyte antigen-6/urokinase-type plasminogen activator receptor-related peptide-1 (SLURP-1) and hippocampal cholinergic neurostimulating peptide (HCNP), on cholinergic activity in T cells. Overall, we stress the fact that ACh does not function only as a neurotransmitter; it impacts immunity by exerting diverse effects on immune cells via mAChRs and nAChRs.


Asunto(s)
Inmunomodulación , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Regulación de la Expresión Génica , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inmunidad , Linfocitos/inmunología , Linfocitos/metabolismo , Especificidad de Órganos , Péptidos/metabolismo , Péptidos/farmacología , Receptores Muscarínicos/genética , Receptores Nicotínicos/genética , Transducción de Señal
5.
Biochim Biophys Acta Mol Basis Dis ; 1864(6 Pt A): 2119-2130, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29551730

RESUMEN

Dominant mutations in the gene encoding copper and zinc-binding superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS). Abnormal accumulation of misfolded SOD1 proteins in spinal motoneurons is a major pathological hallmark in SOD1-related ALS. Dissociation of copper and/or zinc ions from SOD1 has been shown to trigger the protein aggregation/oligomerization in vitro, but the pathological contribution of such metal dissociation to the SOD1 misfolding still remains obscure. Here, we tested the relevance of the metal-deficient SOD1 in the misfolding in vivo by developing a novel antibody (anti-apoSOD), which exclusively recognized mutant SOD1 deficient in metal ions at its copper-binding site. Notably, anti-apoSOD-reactive species were detected specifically in the spinal cords of the ALS model mice only at their early pre-symptomatic stages but not at the end stage of the disease. The cerebrospinal fluid as well as the spinal cord homogenate of one SOD1-ALS patient also contained the anti-apoSOD-reactive species. Our results thus suggest that metal-deficiency in mutant SOD1 at its copper-binding site is one of the earliest pathological features in SOD1-ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico , Cobre/metabolismo , Agregación Patológica de Proteínas/diagnóstico , Superóxido Dismutasa-1/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/inmunología , Esclerosis Amiotrófica Lateral/patología , Animales , Anticuerpos/inmunología , Enfermedades Asintomáticas , Sitios de Unión/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Neuronas Motoras/patología , Mutación , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/inmunología , Agregación Patológica de Proteínas/patología , Unión Proteica/genética , Pliegue de Proteína , Sensibilidad y Especificidad , Médula Espinal/citología , Médula Espinal/patología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/inmunología , Zinc/metabolismo
6.
J Pharmacol Sci ; 134(1): 1-21, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28552584

RESUMEN

T and B cells, macrophages and dendritic cells (DCs) all express most of the components necessary for a functional cholinergic system. This includes choline acetyltransferase (ChAT), muscarinic and nicotinic acetylcholine (ACh) receptors (mAChRs and nAChRs, respectively) and acetylcholinesterase (AChE). Immunological activation of T cells up-regulates cholinergic activity, including ChAT and AChE expression. Moreover, toll-like receptor agonists induce ChAT expression in DCs and macrophages, suggesting cholinergic involvement in the regulation of immune function. Immune cells express all five M1-M5 mAChR subtypes and several nAChR subtypes, including α7. Modulation of antigen-specific antibody and pro-inflammatory cytokine production in M1/M5 mAChR gene-knockout (KO) and α7 nAChR-KO mice further support the idea of a non-neuronal cholinergic system contributing to the regulation of immune function. Evidence also suggests that α7 nAChRs are involved in suppressing DC and macrophage activity, leading to suppression of T cell differentiation into effector T cells. These findings suggest the possibility that immune function could be modulated by manipulating immune cell cholinergic activity using specific agonists and antagonists. Therefore, a fuller understanding of the immune cell cholinergic system should be useful for the development of drugs and therapeutic strategies for the treatment of inflammation-related diseases and cancers.


Asunto(s)
Acetilcolina/metabolismo , Colina O-Acetiltransferasa/metabolismo , Células Dendríticas/metabolismo , Linfocitos/metabolismo , Macrófagos/metabolismo , Receptores Colinérgicos/metabolismo , Animales , Anticuerpos/inmunología , Formación de Anticuerpos , Antígenos/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Citocinas/biosíntesis , Células Dendríticas/inmunología , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Activación de Linfocitos , Linfocitos/inmunología , Macrófagos/inmunología , Receptores Nicotínicos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
7.
Neuropathology ; 37(5): 475-481, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28707715

RESUMEN

Myelination is one of the most remarkable biological events in the neuron-glia interactions for the development of the mammalian nervous system. To elucidate molecular mechanisms of cell-to-cell interactions in myelin synthesis in vitro, establishment of the myelinating system in cocultures of continuous neuronal and glial cell lines are desirable. In the present study, we performed co-culture experiments using rat neural stem cell-derived neurons or mouse embryonic stem (ES) cell-derived motoneurons with immortalized rat IFRS1 Schwann cells to establish myelinating cultures between these cell lines. Differentiated neurons derived from an adult rat neural stem cell line 1464R or motoneurons derived from a mouse ES cell line NCH4.3, were mixed with IFRS1 Schwann cells, plated, and maintained in serum-free F12 medium with B27 supplement, ascorbic acid, and glial cell line-derived neurotrophic factor. Myelin formation was demonstrated by electron microscopy at 4 weeks in cocultures of 1464R-derived neurons or NCH4.3-derived motoneurons with IFRS1 Schwann cells. These in vitro coculture systems utilizing the rodent stable stem and Schwann cell lines can be useful in studies of peripheral nerve development and regeneration.


Asunto(s)
Técnicas de Cocultivo/métodos , Vaina de Mielina , Células-Madre Neurales/citología , Neuronas/citología , Células de Schwann/citología , Animales , Diferenciación Celular/fisiología , Línea Celular , Ratones , Ratas
8.
Genesis ; 54(11): 568-572, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27596971

RESUMEN

VAChT-Cre.Fast and VAChT-Cre.Slow mice selectively express Cre recombinase in approximately one half of postnatal somatic motor neurons. The mouse lines have been used in various studies with selective genetic modifications in adult motor neurons. In the present study, we crossed VAChT-Cre lines with a reporter line, CAG-Syp/tdTomato, in which synaptophysin-tdTomato fusion proteins are efficiently sorted to axon terminals, making it possible to label both cell bodies and axon terminals of motor neurons. In the mice, Syp/tdTomato fluorescence preferentially co-localized with osteopontin, a recently discovered motor neuron marker for slow-twitch fatigue-resistant (S) and fast-twitch fatigue-resistant (FR) types. The fluorescence did not preferentially co-localize with matrix metalloproteinase-9, a marker for fast-twitch fatigable (FF) motor neurons. In the neuromuscular junctions, Syp/tdTomato fluorescence was detected mainly in motor nerve terminals that innervate type I or IIa muscle fibers. These results suggest that the VAChT-Cre lines are Cre-drivers that have selectivity in S and FR motor neurons. In order to avoid confusion, we have changed the mouse line names from VAChT-Cre.Fast and VAChT-Cre.Slow to VAChT-Cre.Early and VAChT-Cre.Late, respectively. The mouse lines will be useful tools to study slow-type motor neurons, in relation to physiology and pathology.


Asunto(s)
Axones/metabolismo , Neuronas Motoras/metabolismo , Fibras Musculares de Contracción Rápida/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/genética , Animales , Integrasas/genética , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Osteopontina/genética , Sinaptofisina/genética , Sinaptofisina/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
9.
Neurobiol Dis ; 65: 102-11, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24486622

RESUMEN

Motor neuron diseases are characterized by the selective chronic dysfunction of a subset of motor neurons and the subsequent impairment of neuromuscular function. To reproduce in the mouse these hallmarks of diseases affecting motor neurons, we generated a mouse line in which ~40% of motor neurons in the spinal cord and the brainstem become unable to sustain neuromuscular transmission. These mice were obtained by conditional knockout of the gene encoding choline acetyltransferase (ChAT), the biosynthetic enzyme for acetylcholine. The mutant mice are viable and spontaneously display abnormal phenotypes that worsen with age including hunched back, reduced lifespan, weight loss, as well as striking deficits in muscle strength and motor function. This slowly progressive neuromuscular dysfunction is accompanied by muscle fiber histopathological features characteristic of neurogenic diseases. Unexpectedly, most changes appeared with a 6-month delay relative to the onset of reduction in ChAT levels, suggesting that compensatory mechanisms preserve muscular function for several months and then are overwhelmed. Deterioration of mouse phenotype after ChAT gene disruption is a specific aging process reminiscent of human pathological situations, particularly among survivors of paralytic poliomyelitis. These mutant mice may represent an invaluable tool to determine the sequence of events that follow the loss of function of a motor neuron subset as the disease progresses, and to evaluate therapeutic strategies. They also offer the opportunity to explore fundamental issues of motor neuron biology.


Asunto(s)
Acetilcolina/metabolismo , Colina O-Acetiltransferasa/deficiencia , Enfermedad de la Neurona Motora/patología , Neuronas Motoras/metabolismo , Factores de Edad , Análisis de Varianza , Animales , Peso Corporal/genética , Colina O-Acetiltransferasa/genética , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Femenino , Regulación de la Expresión Génica/genética , Masculino , Ratones , Ratones Transgénicos , Enfermedad de la Neurona Motora/genética , Neuronas Motoras/clasificación , Fuerza Muscular/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , Factores Sexuales
10.
Brain ; 136(Pt 5): 1371-82, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23449777

RESUMEN

Amyotrophic lateral sclerosis is a devastating, progressive neurodegenerative disease that affects upper and lower motor neurons. Although several genes are identified as the cause of familial cases, the pathogeneses of sporadic forms, which account for 90% of amyotrophic lateral sclerosis, have not been elucidated. Transactive response DNA-binding protein 43 a nuclear protein regulating RNA processing, redistributes to the cytoplasm and forms aggregates, which are the histopathological hallmark of sporadic amyotrophic lateral sclerosis, in affected motor neurons, suggesting that loss-of-function of transactive response DNA-binding protein 43 is one of the causes of the neurodegeneration. To test this hypothesis, we assessed the effects of knockout of transactive response DNA-binding protein 43 in mouse postnatal motor neurons using Cre/loxp system. These mice developed progressive weight loss and motor impairment around the age of 60 weeks, and exhibited degeneration of large motor axon, grouped atrophy of the skeletal muscle, and denervation in the neuromuscular junction. The spinal motor neurons lacking transactive response DNA-binding protein 43 were not affected for 1 year, but exhibited atrophy at the age of 100 weeks; whereas, extraocular motor neurons, that are essentially resistant in amyotrophic lateral sclerosis, remained preserved even at the age of 100 weeks. Additionally, ultra structural analysis revealed autolysosomes and autophagosomes in the cell bodies and axons of motor neurons of the 100-week-old knockout mice. In summary, the mice in which transactive response DNA-binding protein 43 was knocked-out specifically in postnatal motor neurons exhibited an age-dependent progressive motor dysfunction accompanied by neuropathological alterations, which are common to sporadic amyotrophic lateral sclerosis. These findings suggest that transactive response DNA-binding protein 43 plays an essential role in the long term maintenance of motor neurons and that loss-of-function of this protein seems to contribute to the pathogenesis of amyotrophic lateral sclerosis.


Asunto(s)
Proteínas de Unión al ADN/deficiencia , Progresión de la Enfermedad , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Degeneración Nerviosa/metabolismo , Factores de Edad , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología
11.
Exp Neurol ; 376: 114772, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599366

RESUMEN

Animals on Earth need to hold postures and execute a series of movements under gravity and atmospheric pressure. VAChT-Cre is a transgenic Cre driver mouse line that expresses Cre recombinase selectively in motor neurons of S-type (slow-twitch fatigue-resistant) and FR-type (fast-twitch fatigue-resistant). Sequential motor unit recruitment is a fundamental principle for fine and smooth locomotion; smaller-diameter motor neurons (S-type, FR-type) first contract low-intensity oxidative type I and type IIa muscle fibers, and thereafter larger-diameter motor neurons (FInt-type, FF-type) are recruited to contract high-intensity glycolytic type IIx and type IIb muscle fibers. To selectively eliminate S- and FR-type motor neurons, VAChT-Cre mice were crossbred with NSE-DTA mice in which the cytotoxic diphtheria toxin A fragment (DTA) was expressed in Cre-expressing neurons. The VAChT-Cre;NSE-DTA mice were born normally but progressively manifested various characteristics, including body weight loss, kyphosis, kinetic and postural tremor, and muscular atrophy. The progressive kinetic and postural tremor was remarkable from around 20 weeks of age and aggravated. Muscular atrophy was apparent in slow muscles, but not in fast muscles. The increase in motor unit number estimation was detected by electromyography, reflecting compensatory re-innervation by remaining FInt- and FF-type motor neurons to the orphaned slow muscle fibers. The muscle fibers gradually manifested fast/slow hybrid phenotypes, and the remaining FInt-and FF-type motor neurons gradually disappeared. These results suggest selective ablation of S- and FR-type motor neurons induces progressive muscle fiber-type transition, exhaustion of remaining FInt- and FF-type motor neurons, and late-onset kinetic and postural tremor in mice.


Asunto(s)
Ratones Transgénicos , Neuronas Motoras , Temblor , Animales , Neuronas Motoras/patología , Neuronas Motoras/fisiología , Ratones , Temblor/genética , Temblor/fisiopatología , Fibras Musculares de Contracción Lenta/patología , Fibras Musculares de Contracción Rápida/patología , Enfermedades Musculares/fisiopatología , Enfermedades Musculares/patología , Enfermedades Musculares/etiología , Fatiga Muscular/fisiología , Postura/fisiología , Animales Recién Nacidos , Modelos Animales de Enfermedad
12.
J Biol Chem ; 287(51): 42984-94, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23095749

RESUMEN

Evidence suggests that protein misfolding is crucially involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). However, controversy still exists regarding the involvement of proteasomes or autophagy in ALS due to previous conflicting results. Here, we show that impairment of the ubiquitin-proteasome system, but not the autophagy-lysosome system in motor neurons replicates ALS in mice. Conditional knock-out mice of the proteasome subunit Rpt3 in a motor neuron-specific manner (Rpt3-CKO) showed locomotor dysfunction accompanied by progressive motor neuron loss and gliosis. Moreover, diverse ALS-linked proteins, including TAR DNA-binding protein 43 kDa (TDP-43), fused in sarcoma (FUS), ubiquilin 2, and optineurin were mislocalized or accumulated in motor neurons, together with other typical ALS hallmarks such as basophilic inclusion bodies. On the other hand, motor neuron-specific knock-out of Atg7, a crucial component for the induction of autophagy (Atg7-CKO), only resulted in cytosolic accumulation of ubiquitin and p62, and no TDP-43 or FUS pathologies or motor dysfunction was observed. These results strongly suggest that proteasomes, but not autophagy, fundamentally govern the development of ALS in which TDP-43 and FUS proteinopathy may play a crucial role. Enhancement of proteasome activity may be a promising strategy for the treatment of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/patología , Autofagia , Neuronas Motoras/enzimología , Neuronas Motoras/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Conducta Animal , Proteínas de Ciclo Celular , Proteínas de Unión al ADN/metabolismo , Proteínas del Ojo/metabolismo , Proteínas de Transporte de Membrana , Ratones , Ratones Noqueados , Neuroglía/metabolismo , Neuroglía/patología , Especificidad de Órganos , Fenotipo , Subunidades de Proteína/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Médula Espinal/patología , Factores de Tiempo , Ubiquitina/metabolismo
13.
Hum Mol Genet ; 20(21): 4116-31, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21816949

RESUMEN

Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB) are widely expressed in the vertebrate nervous system and play a central role in mature neuronal function. In vitro BDNF/TrkB signaling promotes neuronal survival and can help neurons resist toxic insults. Paradoxically, BDNF/TrkB signaling has also been shown, under certain in vitro circumstances, to render neurons vulnerable to insults. We show here that in vivo conditional deletion of TrkB from mature motor neurons attenuates mutant superoxide dismutase 1 (SOD1) toxicity. Mutant SOD1 mice lacking motor neuron TrkB live a month longer than controls and retain motor function for a longer period, particularly in the early phase of the disease. These effects are subserved by slowed motor neuron loss, persistence of neuromuscular junction integrity and reduced astrocytic and microglial reactivity within the spinal cord. These results suggest that manipulation of BDNF/TrkB signaling might have therapeutic efficacy in motor neuron diseases.


Asunto(s)
Enfermedad de la Neurona Motora/enzimología , Enfermedad de la Neurona Motora/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación/genética , Receptor trkB/metabolismo , Superóxido Dismutasa/genética , Sustitución de Aminoácidos , Animales , Axones/metabolismo , Axones/patología , Desnervación , Progresión de la Enfermedad , Ganglión/metabolismo , Ganglión/patología , Eliminación de Gen , Cuerpos de Inclusión/metabolismo , Inflamación/complicaciones , Inflamación/patología , Inflamación/fisiopatología , Integrasas/metabolismo , Interneuronas/metabolismo , Interneuronas/patología , Longevidad , Ratones , Ratones Noqueados , Actividad Motora , Enfermedad de la Neurona Motora/complicaciones , Enfermedad de la Neurona Motora/fisiopatología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Recombinación Genética/genética , Médula Espinal/metabolismo , Médula Espinal/patología , Superóxido Dismutasa-1 , Ubiquitina/metabolismo , Ubiquitinación , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
14.
Biochem Biophys Res Commun ; 438(1): 175-9, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23876317

RESUMEN

Acetylcholine (ACh) exerts various anti-inflammatory effects through α7 nicotinic ACh receptors (nAChRs). We have previously shown that secreted lymphocyte antigen-6/urokinase-type plasminogen activator receptor-related peptide-1 (SLURP-1), a positive allosteric modulator of α7 nAChR signaling, is down-regulated both in an animal model of asthma and in human epithelial cells treated with an inflammatory cytokine related to asthma. Our aim of this study was to explore the effect of SLURP-1, signal through α7 nAChR, in the pathophysiology of airway inflammation. Cytokine production was examined using human epithelial cells. Ciliary beat frequency of murine trachea was measured using a high speed camera. The IL-6 and TNF-α production by human epithelial cells was augmented by siRNA of SLURP-1 and α7 nicotinic ACh receptor. The cytokine production was also dose-dependently suppressed by human recombinant SLURP-1 (rSLURP-1). The ciliary beat frequency and amplitude of murine epithelial cells were augmented by PNU282987, a selective α7 nAChR agonist. Those findings suggested that SLURP-1 and stimulus through α7 nicotinic ACh receptors actively controlled asthmatic condition by stimulating ciliary beating and also by suppressing airway inflammation.


Asunto(s)
Células Epiteliales/inmunología , Depuración Mucociliar/inmunología , Mucosa Respiratoria/inmunología , Antígenos Ly/farmacología , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Humanos , Depuración Mucociliar/efectos de los fármacos , Mucosa Respiratoria/efectos de los fármacos , Activador de Plasminógeno de Tipo Uroquinasa/farmacología
15.
Proc Natl Acad Sci U S A ; 107(29): 13111-6, 2010 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-20616011

RESUMEN

Defective RNA metabolism is an emerging mechanism involved in ALS pathogenesis and possibly in other neurodegenerative disorders. Here, we show that microRNA (miRNA) activity is essential for long-term survival of postmitotic spinal motor neurons (SMNs) in vivo. Thus, mice that do not process miRNA in SMNs exhibit hallmarks of spinal muscular atrophy (SMA), including sclerosis of the spinal cord ventral horns, aberrant end plate architecture, and myofiber atrophy with signs of denervation. Furthermore, a neurofilament heavy subunit previously implicated in motor neuron degeneration is specifically up-regulated in miRNA-deficient SMNs. We demonstrate that the heavy neurofilament subunit is a target of miR-9, a miRNA that is specifically down-regulated in a genetic model of SMA. These data provide evidence for miRNA function in SMN diseases and emphasize the potential role of miR-9-based regulatory mechanisms in adult neurons and neurodegenerative states.


Asunto(s)
MicroARNs/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatología , Animales , Axones/metabolismo , Axones/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Ratones , Ratones Mutantes , MicroARNs/genética , Actividad Motora/fisiología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Desnervación Muscular , Proteínas de Neurofilamentos/metabolismo , Subunidades de Proteína/metabolismo , Ribonucleasa III/metabolismo , Análisis de Supervivencia
16.
Front Cell Neurosci ; 17: 1308972, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026700

RESUMEN

Microglia are resident innate immune cells in the central nervous system (CNS) and play important roles in the development of CNS homeostasis. Excessive activation and neurotoxicity of microglia are observed in several CNS disorders, but the mechanisms regulating their activation remain unclear. Immune checkpoint molecules are expressed on activated immune cells and regulate their activation in peripheral immunity. However, the expression mechanism of immune checkpoint molecules in activated microglia is still unknown. Here, we analyzed the expression of immune checkpoint molecules in activated microglia using the mouse microglial cell line BV2 and primary cultured microglia. The expression of lymphocyte activation gene-3 (LAG-3), a type of immune checkpoint molecule, was increased in microglia activated by IFN-γ. IFN-γ-induced LAG-3 expression in microglia was suppressed by transfection of siRNA targeting STAT1. LAG-3 has two forms, membrane and soluble, and both forms were upregulated in microglia activated by IFN-γ. The production of soluble LAG-3 was suppressed by treatment with inhibitors of metalloproteinases such as ADAM10 and ADAM17. IFN-γ administration into cisterna magna of mice increased LAG-3 expression in spinal microglia. Furthermore, LAG-3 knockdown in microglia promoted nitric oxide production by IFN-γ. Our results demonstrate that LAG-3 expression in microglia is induced by the IFN-γ-STAT1 pathway and soluble LAG-3 production is regulated via cleavage of membranous LAG-3 by metalloproteinases including ADAM10 and ADAM17.

17.
Front Cell Neurosci ; 17: 1291673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077951

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease in which non-cell-autonomous processes have been proposed as its cause. Non-neuronal cells that constitute the environment around motor neurons are known to mediate the pathogenesis of ALS. Perivascular macrophages (PVM) are immune cells that reside between the blood vessels of the central nervous system and the brain parenchyma; PVM are components of the neurovascular unit and regulate the integrity of the blood-spinal cord barrier (BSCB). However, it is not known whether regulation of BSCB function by PVM is involved in the pathogenesis of ALS. Here, we used SOD1G93A mice to investigate whether PVM is involved in the pathogenesis of ALS. Immunostaining revealed that the number of PVM was increased during the disease progression of ALS in the spinal cord. We also found that both anti-inflammatory Lyve1+ PVM and pro-inflammatory MHCII+ PVM subtypes were increased in SOD1G93A mice, and that subtype heterogeneity was shifted toward MHCII+ PVM compared to wild-type (WT) mice. Then we depleted PVM selectively and continuously in SOD1G93A mice by repeated injection of clodronate liposomes into the cerebrospinal fluid and assessed motor neuron number, neurological score, and survival. Results showed that PVM depletion prevented the loss of motoneurons, slowed disease progression, and prolonged survival. Further histological analysis showed that PVM depletion prevents BSCB collapse by ameliorating the reduction of extracellular matrix proteins necessary for the maintenance of barrier function. These results indicate that PVM are involved in the pathogenesis of ALS, as PVM degrades the extracellular matrix and reduces BSCB function, which may affect motor neuron loss and disease progression. Targeting PVM interventions may represent a novel ALS therapeutic strategy.

18.
J Neurosci ; 31(42): 14989-97, 2011 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22016532

RESUMEN

Cholinergic neurons are endowed with a high-affinity choline uptake system for efficient synthesis of acetylcholine at the presynaptic terminals. The high-affinity choline transporter CHT1 is responsible for choline uptake, the rate-limiting step in acetylcholine synthesis. However, endogenous physiological factors that affect CHT1 expression or function and consequently regulate the acetylcholine synthesis rate are essentially unknown. Here we demonstrate that extracellular substrate decreases the cell-surface expression of CHT1 in rat brain synaptosomes, primary cultures from the basal forebrain, and mammalian cell lines transfected with CHT1. Extracellular choline rapidly decreases cell-surface CHT1 expression by accelerating its internalization, a process that is mediated by a dynamin-dependent endocytosis pathway in HEK293 cells. Specific inhibitor hemicholinium-3 decreases the constitutive internalization rate and thereby increases cell-surface CHT1 expression. We also demonstrate that the constitutive internalization of CHT1 depends on extracellular pH in cultured cells. Our results collectively suggest that the internalization of CHT1 is induced by extracellular substrate, providing a novel feedback mechanism for the regulation of acetylcholine synthesis at the cholinergic presynaptic terminals.


Asunto(s)
Neuronas/metabolismo , Simportadores/metabolismo , Animales , Animales Recién Nacidos , Biotinilación/métodos , Células Cultivadas , Colina/metabolismo , Colina/farmacología , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Femenino , Hemicolinio 3/farmacocinética , Humanos , Concentración de Iones de Hidrógeno , Ligandos , Neuronas/efectos de los fármacos , Cloruro de Potasio/farmacología , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , ARN Interferente Pequeño/farmacología , Ratas , Tabique del Cerebro/citología , Simportadores/genética , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Transfección , Tritio/metabolismo , Tritio/farmacocinética
19.
J Neurosci Res ; 90(4): 732-42, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22420030

RESUMEN

Motor neurons (MNs) are designated as alpha/gamma and fast/slow based on their target sites and the types of muscle fibers innervated; however, few molecular markers that distinguish between these subtypes are available. Here we report that osteopontin (OPN) is a selective marker of alpha MNs in the mouse spinal cord. OPN was detected in approximately 70% of postnatal choline acetyltransferase (ChAT)-positive MNs with relatively large somas, but not in those with smaller somas. OPN+/ChAT+ MNs were also positive for NeuN, an alpha MN marker, but were negative for Err3, a gamma MN marker. The size distribution of OPN+/ChAT+ cells was nearly identical to that of NeuN+/ChAT+ alpha MNs. Group Ia proprioceptive terminals immunoreactive for vesicular glutamate transporter-1 were selectively detected on the OPN+/ChAT+ cells. OPN staining was also detected at motor axon terminals at neuromuscular junctions, where the OPN+ terminals were positive or negative for SV2A, a marker distinguishing fast/slow motor endplates. Finally, retrograde labeling following intramuscular injection of fast blue indicated that OPN is expressed in both fast and slow MNs. Collectively, our findings show that OPN is an alpha MN marker present in both the soma and the endplates of alpha MNs in the postnatal mouse spinal cord.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas Motoras/metabolismo , Osteopontina/metabolismo , Médula Espinal/citología , Amidinas/metabolismo , Animales , Animales Recién Nacidos , Bungarotoxinas/farmacocinética , Recuento de Células , Colina O-Acetiltransferasa/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculos/inervación , Músculos/metabolismo , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/metabolismo , Osteopontina/deficiencia , Fosfopiruvato Hidratasa/metabolismo , Células del Asta Posterior/metabolismo , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Receptores de Estrógenos/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
20.
J Cell Biol ; 179(1): 151-64, 2007 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-17923534

RESUMEN

Kidney development and physiology require polarization of epithelia that line renal tubules. Genetic studies show that polarization of invertebrate epithelia requires the crumbs, partition-defective-3, and discs large complexes. These evolutionarily conserved protein complexes occur in mammalian kidney; however, their role in renal development remains poorly defined. Here, we find that mice lacking the small PDZ protein mammalian LIN-7c (MALS-3) have hypomorphic, cystic, and fibrotic kidneys. Proteomic analysis defines MALS-3 as the only known core component of both the crumbs and discs large cell polarity complexes. MALS-3 mediates stable assembly of the crumbs tight junction complex and the discs large basolateral complex, and these complexes are disrupted in renal epithelia from MALS-3 knockout mice. Interestingly, MALS-3 controls apico-basal polarity preferentially in epithelia derived from metanephric mesenchyme, and defects in kidney architecture owe solely to MALS expression in these epithelia. These studies demonstrate that defects in epithelial cell polarization can cause cystic and fibrotic renal disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Riñón/patología , Complejos Multiproteicos/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Secuencia de Aminoácidos , Animales , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/fisiología , Proteínas de Ciclo Celular , Células Epiteliales/metabolismo , Riñón/embriología , Riñón/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Organogénesis/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Uniones Estrechas/metabolismo , Uniones Estrechas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA