Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Cancer ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898604

RESUMEN

Metastatic cutaneous melanoma is a fatal skin cancer. Resistance to targeted and immune therapies limits the benefits of current treatments. Identifying and adding anti-resistance agents to current treatment protocols can potentially improve clinical responses. Myocardin-related transcription factor (MRTF) is a transcriptional coactivator whose activity is indirectly regulated by actin and the Rho family of GTPases. We previously demonstrated that development of BRAF inhibitor (BRAFi) resistance frequently activates the Rho/MRTF pathway in human and mouse BRAFV600E melanomas. In clinical trials, pretreatment with BRAFi reduces the benefit of immune therapies. We aimed to test the efficacy of concurrent treatment with our MRTF pathway inhibitor CCG-257081 and anti-PD1 in vivo and to examine its effects on the melanoma immune microenvironment. Because MRTF pathway activation upregulates the expression of immune checkpoint inhibitor genes/proteins, we asked whether CCG-257081 can improve the response to immune checkpoint blockade. CCG-257081 reduced the expression of PDL1 in BRAFi-resistant melanoma cells and decreased surface PDL1 levels on both BRAFi-sensitive and -resistant melanoma cells. Using our recently described murine vemurafenib-resistant melanoma model, we found that CCG-257081, in combination with anti-PD1 immune therapy, reduced tumor growth and increased survival. Moreover, anti-PD1/CCG-257081 co-treatment increased infiltration of CD8+ T cells and B cells into the tumor microenvironment and reduced tumor-associated macrophages. Here, we propose CCG-257081 as an anti-resistance and immune therapy-enhancing anti-melanoma agent.

2.
Mol Pharmacol ; 101(1): 1-12, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34732527

RESUMEN

Most B-Raf proto-oncogene (BRAF)-mutant melanoma tumors respond initially to BRAF inhibitor (BRAFi)/mitogen-activated protein kinase kinase 1 inhibitor (MEKi) therapy, although few patients have durable long-term responses to these agents. The goal of this study was to use an unbiased computational approach to identify inhibitors that reverse an experimentally derived BRAFi resistance gene expression signature. Using this approach, we found that ibrutinib effectively reverses this signature, and we demonstrate experimentally that ibrutinib resensitizes a subset of BRAFi-resistant melanoma cells to vemurafenib. Ibrutinib is used clinically as an inhibitor of the Src family kinase Bruton tyrosine kinase (BTK); however, neither BTK deletion nor treatment with acalabrutinib, another BTK inhibitor with reduced off-target activity, resensitized cells to vemurafenib. These data suggest that ibrutinib acts through a BTK-independent mechanism in vemurafenib resensitization. To better understand this mechanism, we analyzed the transcriptional profile of ibrutinib-treated BRAFi-resistant melanoma cells and found that the transcriptional profile of ibrutinib was highly similar to that of multiple Src proto-oncogene kinase inhibitors. Since ibrutinib, but not acalabrutinib, has appreciable off-target activity against multiple Src family kinases, it suggests that ibrutinib may be acting through this mechanism. Furthermore, genes that are differentially expressed in ibrutinib-treated cells are enriched in Yes1-associated transcriptional regulator (YAP1) target genes, and we showed that ibrutinib, but not acalabrutinib, reduces YAP1 activity in BRAFi-resistant melanoma cells. Taken together, these data suggest that ibrutinib, or other Src family kinase inhibitors, may be useful for treating some BRAFi/MEKi-refractory melanoma tumors. SIGNIFICANCE STATEMENT: MAPK-targeted therapies provide dramatic initial responses, but resistance develops rapidly; a subset of these tumors may be rendered sensitive again by treatment with an approved Src family kinase inhibitor-ibrutinub-potentially providing improved clinical outcomes.


Asunto(s)
Adenina/análogos & derivados , Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Melanoma/metabolismo , Piperidinas/farmacología , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Adenina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/fisiología , Células HEK293 , Humanos , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Vemurafenib/farmacología , Proteínas Señalizadoras YAP/antagonistas & inhibidores
3.
Nat Commun ; 15(1): 4892, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849329

RESUMEN

Reducing disparities is vital for equitable access to precision treatments in cancer. Socioenvironmental factors are a major driver of disparities, but differences in genetic variation likely also contribute. The impact of genetic ancestry on prioritization of cancer targets in drug discovery pipelines has not been systematically explored due to the absence of pre-clinical data at the appropriate scale. Here, we analyze data from 611 genome-scale CRISPR/Cas9 viability experiments in human cell line models to identify ancestry-associated genetic dependencies essential for cell survival. Surprisingly, we find that most putative associations between ancestry and dependency arise from artifacts related to germline variants. Our analysis suggests that for 1.2-2.5% of guides, germline variants in sgRNA targeting sequences reduce cutting by the CRISPR/Cas9 nuclease, disproportionately affecting cell models derived from individuals of recent African descent. We propose three approaches to mitigate this experimental bias, enabling the scientific community to address these disparities.


Asunto(s)
Sistemas CRISPR-Cas , Mutación de Línea Germinal , Humanos , Edición Génica/métodos , ARN Guía de Sistemas CRISPR-Cas/genética , Células Germinativas/metabolismo , Variación Genética , Neoplasias/genética , Reacciones Falso Negativas , Genoma Humano , Línea Celular Tumoral , Línea Celular
4.
Front Oncol ; 12: 766794, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444937

RESUMEN

Single agent and combination therapy with BRAFV600E/K and MEK inhibitors have remarkable efficacy against melanoma tumors with activating BRAF mutations, but in most cases BRAF inhibitor (BRAFi) resistance eventually develops. One resistance mechanism is reactivation of the ERK pathway. However, only about half of BRAFi resistance is due to ERK reactivation. The purpose of this study is to uncover pharmacological vulnerabilities of BRAFi-resistant melanoma cells, with the goal of identifying new therapeutic options for patients whose tumors have developed resistance to BRAFi/MEKi therapy. We screened a well-annotated compound library against a panel of isogenic pairs of parental and BRAFi-resistant melanoma cell lines to identify classes of compounds that selectively target BRAFi-resistant cells over their BRAFi-sensitive counterparts. Two distinct patterns of increased sensitivity to classes of pharmacological inhibitors emerged. In two cell line pairs, BRAFi resistance conferred increased sensitivity to compounds that share the property of cell cycle arrest at M-phase, including inhibitors of aurora kinase (AURK), polo-like kinase (PLK), tubulin, and kinesin. Live cell microscopy, used to track mitosis in real time, revealed that parental but not BRAFi-resistant melanoma cells were able to exit from compound-induced mitotic arrest through mitotic slippage, thus escaping death. Consistent with the key role of Cyclin B1 levels in regulating mitosis at the spindle checkpoint in arrested cells, we found lower Cyclin B1 levels in parental compared with BRAFi-resistant melanoma cells, suggesting that inability to down-regulate Cyclin B1 expression levels may explain the increased vulnerability of resistant cells to mitotic inhibitors. Another BRAFi-resistant cell line showed increased sensitivity to Chk1/2 inhibitors, which was associated with an accumulation of DNA damage, resulting in mitotic failure. This study demonstrates that BRAFi-resistance, in at least a subset of melanoma cells, confers vulnerability to pharmacological disruption of mitosis and suggests a targeted synthetic lethal approach for overcoming resistance to BRAF/MEK-directed therapies.

5.
Cancers (Basel) ; 13(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33921974

RESUMEN

The Ras/MEK/ERK pathway has been the primary focus of targeted therapies in melanoma; it is aberrantly activated in almost 80% of human cutaneous melanomas (≈50% BRAFV600 mutations and ≈30% NRAS mutations). While drugs targeting the MAPK pathway have yielded success in BRAFV600 mutant melanoma patients, such therapies have been ineffective in patients with NRAS mutant melanomas in part due to their cytostatic effects and primary resistance. Here, we demonstrate that increased Rho/MRTF-pathway activation correlates with high intrinsic resistance to the MEK inhibitor, trametinib, in a panel of NRAS mutant melanoma cell lines. A combination of trametinib with the Rho/MRTF-pathway inhibitor, CCG-222740, synergistically reduced cell viability in NRAS mutant melanoma cell lines in vitro. Furthermore, the combination of CCG-222740 with trametinib induced apoptosis and reduced clonogenicity in SK-Mel-147 cells, which are highly resistant to trametinib. These findings suggest a role of the Rho/MRTF-pathway in intrinsic trametinib resistance in a subset of NRAS mutant melanoma cell lines and highlight the therapeutic potential of concurrently targeting the Rho/MRTF-pathway and MEK in NRAS mutant melanomas.

6.
Sci Rep ; 9(1): 7072, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31068602

RESUMEN

The stromal reaction in pancreatic cancer creates a physical barrier that blocks therapeutic intervention and creates an immunosuppressive tumor microenvironment. The Rho/myocardin-related transcription factor (MRTF) pathway is implicated in the hyper-activation of fibroblasts in fibrotic diseases and the activation of pancreatic stellate cells. In this study we use CCG-222740, a small molecule, designed as a Rho/MRTF pathway inhibitor. This compound decreases the activation of stellate cells in vitro and in vivo, by reducing the levels of alpha smooth muscle actin (α-SMA) expression. CCG-222740 also modulates inflammatory components of the pancreas in KC mice (LSL-KrasG12D/+; Pdx-1-Cre) stimulated with caerulein. It decreases the infiltration of macrophages and increases CD4 T cells and B cells. Analysis of the pancreatic adenocarcinoma (PDA) TCGA dataset revealed a correlation between elevated RhoA, RhoC and MRTF expression and decreased survival in PDA patients. Moreover, a MRTF signature is correlated with a Th2 cell signature in human PDA tumors.


Asunto(s)
Adenocarcinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/efectos de los fármacos , Transactivadores/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Proteína rhoC de Unión a GTP/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Proteínas de Homeodominio/genética , Integrasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Estrelladas Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Células RAW 264.7 , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Proteína rhoC de Unión a GTP/metabolismo
7.
Sci Rep ; 9(1): 10718, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31341204

RESUMEN

In prior work we demonstrated that loss of E2F transcription factors inhibits metastasis. Here we address the mechanisms for this phenotype and identify the E2F regulated genes that coordinate tumor cell metastasis. Transcriptomic profiling of E2F1 knockout tumors identified a role for E2F1 as a master regulator of a suite of pro-metastatic genes, but also uncovered E2F1 target genes with an unknown role in pulmonary metastasis. High expression of one of these genes, Fgf13, is associated with early human breast cancer metastasis in a clinical dataset. Together these data led to the hypothesis that Fgf13 is critical for breast cancer metastasis, and that upregulation of Fgf13 may partially explain how E2F1 promotes breast cancer metastasis. To test this hypothesis we ablated Fgf13 via CRISPR. Deletion of Fgf13 in a MMTV-PyMT breast cancer cell line reduces colonization of the lungs in a tail vein injection. In addition, loss of Fgf13 reduced in vitro cell migration, suggesting that Fgf13 may be critical for tumor cells to escape the primary tumor and to colonize the distal sites. The significance of this work is twofold: we have both uncovered genomic features by which E2F1 regulates metastasis and we have identified new pro-metastatic functions for the E2F1 target gene Fgf13.


Asunto(s)
Movimiento Celular , Factor de Transcripción E2F1/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Neoplasias Mamarias Experimentales/metabolismo , Animales , Línea Celular Tumoral , Factor de Transcripción E2F1/genética , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Metástasis de la Neoplasia
8.
ACS Pharmacol Transl Sci ; 2(2): 92-100, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-32039344

RESUMEN

A series of compounds (including CCG-1423 and CCG-203971) discovered through an MRTF/SRF-dependent luciferase screen has shown remarkable efficacy in a variety of in vitro and in vivo models, including significant reduction of melanoma metastasis and bleomycin- induced fibrosis. Although these compounds are efficacious in these disease models, the molecular target is unknown. Here, we describe affinity isolation-based target identification efforts which yielded pirin, an iron-dependent cotranscription factor, as a target of this series of compounds. Using biophysical techniques including isothermal titration calorimetry and X-ray crystallography, we verify that pirin binds these compounds in vitro. We also show with genetic approaches that pirin modulates MRTF- dependent luciferase reporter activity. Finally, using both siRNA and a previously validated pirin inhibitor, we show a role for pirin in TGF-ß- induced gene expression in primary dermal fibroblasts. A recently developed analog, CCG-257081, which co crystallizes with pirin, is also effective in the prevention of bleomycin-induced dermal fibrosis.

9.
Mol Cancer Res ; 15(8): 1085-1095, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28487380

RESUMEN

A hallmark of glioblastoma (GBM) tumors is their highly invasive behavior. Tumor dissemination into surrounding brain tissue is responsible for incomplete surgical resection, and subsequent tumor recurrence. Identification of targets that control GBM cell dissemination is critical for developing effective therapies to treat GBM. A majority of GBM tumors have dysregulated EGFR signaling, due most frequently to EGFR amplification or the presence of a constitutively active EGFRvIII mutant. Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that can activate multiple MAPK pathways. In this study, evidence is provided that MLK3 is essential for GBM cell migration and invasion, and that an MLK inhibitor blocks EGF-induced migration and invasion. MLK3 silencing or MLK inhibition blocks EGF-induced JNK activation, suggesting that MLK3-JNK signaling promotes invasion of GBM cells. Mechanistically, it is demonstrated that DOCK180, a RAC1 guanine nucleotide exchange factor (GEF) overexpressed in invasive GBM cells, activates the MLK3-JNK signaling axis in a RAC1-dependent manner. In summary, this investigation identifies an EGFR-DOCK180-RAC1-MLK3-JNK signaling axis that drives glioblastoma cell migration and dissemination.Implications: On the basis of these findings, MLK3 emerges as a potential therapeutic target for the treatment of glioblastoma. Mol Cancer Res; 15(8); 1085-95. ©2017 AACR.


Asunto(s)
Receptores ErbB/genética , Glioblastoma/genética , Quinasas Quinasa Quinasa PAM/genética , Proteínas de Unión al GTP rac/genética , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Humanos , MAP Quinasa Quinasa 4/genética , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Transducción de Señal/genética , Proteína de Unión al GTP rac1/genética , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
10.
Mol Cancer Ther ; 16(1): 193-204, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27837031

RESUMEN

Melanoma is the most dangerous form of skin cancer with the majority of deaths arising from metastatic disease. Evidence implicates Rho-activated gene transcription in melanoma metastasis mediated by the nuclear localization of the transcriptional coactivator, myocardin-related transcription factor (MRTF). Here, we highlight a role for Rho and MRTF signaling and its reversal by pharmacologic inhibition using in vitro and in vivo models of human melanoma growth and metastasis. Using two cellular models of melanoma, we clearly show that one cell type, SK-Mel-147, is highly metastatic, has high RhoC expression, and MRTF nuclear localization and activity. Conversely, SK-Mel-19 melanoma cells have low RhoC expression, and decreased levels of MRTF-regulated genes. To probe the dependence of melanoma aggressiveness to MRTF transcription, we use a previously developed small-molecule inhibitor, CCG-203971, which at low micromolar concentrations blocks nuclear localization and activity of MRTF-A. In SK-Mel-147 cells, CCG-203971 inhibits cellular migration and invasion, and decreases MRTF target gene expression. In addition, CCG-203971-mediated inhibition of the Rho/MRTF pathway significantly reduces cell growth and clonogenicity and causes G1 cell-cycle arrest. In an experimental model of melanoma lung metastasis, the RhoC-overexpressing melanoma cells (SK-Mel-147) exhibited pronounced lung colonization compared with the low RhoC-expressing SK-Mel-19. Furthermore, pharmacologic inhibition of the MRTF pathway reduced both the number and size of lung metastasis resulting in a marked reduction of total lung tumor burden. These data link Rho and MRTF-mediated signaling with aggressive phenotypes and support targeting the MRTF transcriptional pathway as a novel approach to melanoma therapeutics. Mol Cancer Ther; 16(1); 193-204. ©2016 AACR.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Pulmonares/secundario , Melanoma/genética , Melanoma/metabolismo , Transducción de Señal/efectos de los fármacos , Transactivadores/antagonistas & inhibidores , Transactivadores/metabolismo , Proteínas de Unión al GTP rho/genética , Actinas/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Expresión Génica , Humanos , Melanoma/patología , Ratones , Metástasis de la Neoplasia , Ácidos Nipecóticos/farmacología , Transcripción Genética , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína rhoC de Unión a GTP
11.
Proteomics Clin Appl ; 10(5): 585-96, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26756417

RESUMEN

PURPOSE: A goal of this study was to identify and investigate previously unrecognized components of the remodeling process in the progression to heart failure by comparing protein expression in ischemic failing (F) and nonfailing (NF) human hearts. EXPERIMENTAL DESIGN: Protein expression differences were investigated using multidimensional protein identification and validated by Western analysis. This approach detected basal lamina (BL) remodeling, and further studies analyzed samples for evidence of structural BL remodeling. A rat model of pressure overload (PO) was studied to determine whether nonischemic stressors also produce BL remodeling and impact cellular adhesion. RESULTS: Differential protein expression of collagen IV, laminin α2, and nidogen-1 indicated BL remodeling develops in F versus NF hearts Periodic disruption of cardiac myocyte BL accompanied this process in F, but not NF heart. The rat PO myocardium also developed BL remodeling and compromised myocyte adhesion compared to sham controls. CONCLUSIONS AND CLINICAL RELEVANCE: Differential protein expression and evidence of structural and functional BL alterations develop during heart failure. The compromised adhesion associated with this remodeling indicates a high potential for dysfunctional cellular integrity and tethering in failing myocytes. Therapeutically targeting BL remodeling could slow or prevent the progression of heart disease.


Asunto(s)
Membrana Basal/metabolismo , Colágeno Tipo IV/genética , Insuficiencia Cardíaca/diagnóstico , Laminina/genética , Glicoproteínas de Membrana/genética , Isquemia Miocárdica/diagnóstico , Anciano , Animales , Membrana Basal/patología , Colágeno Tipo IV/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Laminina/metabolismo , Glicoproteínas de Membrana/metabolismo , Persona de Mediana Edad , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA