Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mol Recognit ; 36(4): e3007, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36700877

RESUMEN

Staphylococcus aureus has been widely reported to be majorly responsible for causing nosocomial infections worldwide. Due to an increase in antibiotic-resistant strains, the development of an effective vaccine against the bacteria is the most viable alternative. Therefore, in the current work, an effort has been undertaken to develop a novel peptide-based vaccine construct against S aureus that can potentially evoke the B and T cell immune responses. The fibronectin-binding proteins are an attractive target as they play a prominent role in bacterial adherence and host cell invasion and are also well conserved among rapidly mutating pathogens. Therefore, highly immunogenic linear B lymphocytes (LBL), cytotoxic T lymphocytes (CTL), and helper T lymphocytes (HTL) epitopes were identified from the antigenic fibronectin-binding proteins A and B (FnBPA and FnBPB) of S aureus using immunoinformatics approaches. The selected peptides were confirmed to be non-allergenic, non-toxic, and with a high binding affinity to the majority of human leukocyte antigens (HLA) alleles. Consequently, the multi-peptide vaccine construct was developed by fusing the screened epitopes (three LBL, five CTL, and two HTL) together with the suitable adjuvant and linkers. In addition, the tertiary conformation of the peptide construct was modeled and later docked to the Toll-like receptor 2. Subsequently, a molecular dynamics simulation of 100 ns was employed to corroborate the stability of the designed vaccine-receptor complex. Besides exhibiting high immunogenicity and conformational stability, the developed vaccine was observed to possess wide population coverage of 99.51% worldwide. Additional in vivo and in vitro validation studies would certainly corroborate the designed vaccine construct to have improved prophylactic efficacy against S aureus.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Fibronectinas , Vacunología , Epítopos de Linfocito T , Epítopos de Linfocito B/química , Vacunas de Subunidad/química , Simulación del Acoplamiento Molecular , Biología Computacional
2.
Environ Res ; 234: 116556, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37414389

RESUMEN

The extremely widespread and ubiquitous nature of plastics, estimated to boost its global production by 26 billion tons till 2050. The large chunks of plastic waste that decomposed down to micro- or nano plastics (MNPs) leads to various ill effects on biological entities. The conventional PET detection methods lack rapid detection of microplastics due to variances in microplastic features, long-drawn-out sample pre-processing procedures and complex instrumentation. Therefore, an instantaneous colorimetric evaluation of microplastic will ensures the simplicity of conducting assays on field. Several nanoparticle-based biosensors that detects proteins, nucleic acids, metabolites operate on either cluster or disperse state of nanoparticle. However, gold nanoparticle (AuNPs) emerges an ideal scaffold for sensory element in lateral flow biosensors due to their simple surface functionalization, unique optoelectronic properties and varied colour spectrum depending on morphologies and aggregation state. In this paper an effort has been made in the form of a hypothesis using in silico tools as a basis to detect polyethylene terephthalate (PET) - most abundant type of microplastic using gold nanoparticle based lateral flow biosensor. We retrieved sequences of PET-binding synthetic peptides and modelled their 3-D structure using I-Tasser server. The best protein model for each peptide sequences are docked with PET monomers - BHET, MHET and other PET polymeric ligands, to evaluate their binding affinities. The synthetic peptide SP 1 (WPAWKTHPILRM) docked with BHET and (MHET)4 exhibits 1.5-fold increases in binding affinity as compared to reference PET anchor peptide Dermaseptin SI (DSI). The GROMACS molecular dynamics simulation studies of synthetic peptide SP 1 - BHET & - (MHET)4 complexes for 50 ns further confirmed the stable binding. RMSF, RMSD, hydrogen bonds, Rg and SASA analysis provides useful structural insights of the SP 1 complexes as compared to reference DSI. Furthermore, SP 1 functionalized AuNP-based colorimetric device was described in detail for detection of PET.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Microplásticos , Plásticos/análisis , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Oro , Colorimetría , Polietileno
3.
Mol Divers ; 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37801217

RESUMEN

Klebsiella pneumoniae, which is among the top three pathogens on WHO's priority list, is one of the gram-negative bacteria that doctors and researchers around the world have fought for decades. Capsular polysaccharide (CPS) protein is extensively recognized as an important K. pneumoniae virulence factor. Thus, CPS has become the most characterized target for the discovery of novel drug candidates. The ineffectiveness of currently existing antibiotics urges the search for potent antimicrobial compounds. Flavonoids are a group of plant metabolites that have antibacterial potential and can enhance the present medications to elicit improved results against diverse diseases without adverse reactions. Henceforth, the present study aims to illustrate the inhibitory potential of flavonoids with varying pharmacological properties, targeting the CPS protein of K. pneumoniae by in silico approaches. The flavonoid compounds (n = 169) were retrieved from the PubChem database and screened using the structure-based virtual screening approach. Compounds with the highest binding score were estimated through their pharmacokinetic effects by ADMET descriptors. Finally, four potential inhibitors with PubChem CID: (4301534, 5213, 5481948, and 637080) were selected after molecular docking and drug-likeness analysis. All four lead compounds were employed for the MDS analysis of a 100 ns time period. Various studies were undertaken to assess the stability of the protein-ligand complexes. The binding free energy was computed using MM-PBSA, and the outcomes indicated that the molecules are having stable interactions with the binding site of the target protein. The results revealed that all four compounds can be employed as potential therapeutics against K. pneumoniae.

4.
World J Microbiol Biotechnol ; 39(8): 209, 2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37237168

RESUMEN

Although ADP glucose pyrophosphorylase (AGPase), with two large subunits (ls) and two small subunits (ss), is a promising knockout target for increasing the neutral lipid content, the details regarding the sequence-structure features and their distribution within metabolic system in microalgae is rather limited. Against this backdrop, a comprehensive genome-wide comparative analysis on 14 sequenced microalgal genomes was performed. For the first time the heterotetrameric structure of the enzyme and the interaction of the catalytic unit with the substrate was also studied. Novel findings of the present study includes: (i) at the DNA level, the genes controlling the ss are more conserved than those controlling the ls; the variation in both the gene groups is mainly due to exon number, exon length and exon phase distribution; (ii) at protein level, the ss genes are more conserved relative to those for ls; (III) three putative key consensus sequences 'LGGGAGTRLYPLTKNRAKPAV', 'WFQGTADAV' and 'ASMGIYVFRKD' were ubiquitously conserved in all the AGPases; (iv) molecular dynamics investigations revealed that the modeled AGPase heterotetrameric structure, from oleaginous algae Chlamydomonas reinharditii, was completely stable in real time environment; (v) The binding interfaces of catalytic unit, ssAGPase, from C. reinharditii with α-D-glucose 1-phosphate (αGP) was also analyzed. The results of the present study have provided system-based insights into the structure-function of the genes and encoded proteins, which provided clues for exploitation of variability in these genes that, could be further utilized to design site-specific mutagenic experiments for engineering of microalgal strains towards sustainable development of biofuel.


Asunto(s)
Biocombustibles , Microalgas , Glucosa-1-Fosfato Adenililtransferasa/química , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Secuencia de Aminoácidos , Microalgas/genética , Microalgas/metabolismo , Secuencia de Bases
5.
Cell Biol Toxicol ; 38(1): 111-127, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33651227

RESUMEN

The key to bacterial virulence relies on an exquisite balance of signals between microbe and hosts. Bacterial toxin-antitoxin (TA) system is known to play a vital role in response to stress adaptation, drug resistance, biofilm formation, intracellular survival, persistence as well as pathogenesis. In the present study, we investigated the role of Hha-TomB TA system in regulating virulence of Salmonella enterica serovar Typhimurium (S. Typhimurium) in a host model system, where we showed that deletion of hha and tomB genes displayed impaired cell adhesion, invasion, and uptake. The isogenic hha and tomB mutant strain was also found to be deficient in intracellular replication in vitro, with a highly repressed Salmonella Pathogenicity Island-2 (SPI-2) genes and downregulation of Salmonella Pathogenicity Island-1 (SPI-1) genes. In addition, the Δhha and ΔtomB did not show acute colitis in C57BL/6 mice and displayed less dissemination to systemic organs followed by their cecal pathology. The TA mutants also showed reduction in serum cytokine and nitric oxide levels both in vitro and in vivo. However, the inflammation phenotype was restored on complementing strain of TA gene to its mutant strain. In silico studies depicted firm interaction of Hha-TomB complex and the regulatory proteins, namely, SsrA, SsrB, PhoP, and PhoQ. Overall, we demonstrate that this study of Hha-TomB TA system is one of the prime regulating networks essential for S. Typhimurium pathogenesis. 1. Role of Hha-TomB toxin-antitoxin (TA) system in Salmonella pathogenesis was examined. 2. The TA mutants resulted in impaired invasion and intracellular replication in vitro. 3. The TA mutants displayed alteration in SPI-1 and SPI-2 regulatory genes inside host cells. 4. Mutation in TA genes also limited systemic colonization and inflammatory response in vivo.


Asunto(s)
Antitoxinas , Salmonella typhimurium , Animales , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Inmunidad , Ratones , Ratones Endogámicos C57BL , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Serogrupo
6.
Microb Pathog ; 160: 105171, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34481860

RESUMEN

Staphylococcus aureus infection is emerging as a global threat because of the highly debilitating nature of the associated disease's unprecedented magnitude of its spread and growing global resistance to antimicrobial medicines. Recently WHO has categorized these bacteria under the high global priority pathogen list and is one of the six nosocomial pathogens termed as ESKAPE pathogens which have emerged as a serious threat to public health worldwide. The development of a specific vaccine can stimulate an optimal antibody response, thus providing immunity against it. Therefore, in the present study efforts have been made to identify potential vaccine candidates from the Clumping factor surface proteins (ClfA and ClfB) of S. aureus. Employing the immunoinformatics approach, fourteen antigenic peptides including T-cell, B-cell epitopes were identified which were non-toxic, non-allergenic, high antigenicity, strong binding efficiency with commonly occurring MHC alleles. Consequently, a multi-epitope vaccine chimera was designed by connecting these epitopes with suitable linkers an adjuvant to enhance immunogenicity. Further, homology modeling and molecular docking were performed to construct the three-dimensional structure of the vaccine and study the interaction between the modeled structure and immune receptor (TLR-2) present on lymphocyte cells. Consequently, molecular dynamics simulation for 100 ns period confirmed the stability of the interaction and reliability of the structure for further analysis. Finally, codon optimization and in silico cloning were employed to ensure the successful expression of the vaccine candidate. As the targeted protein is highly antigenic and conserved, hence the designed novel vaccine construct holds potential against emerging multi-drug-resistant organisms.


Asunto(s)
Adhesinas Bacterianas/inmunología , Coagulasa/inmunología , Epítopos de Linfocito B , Epítopos de Linfocito T , Infecciones Estafilocócicas , Biología Computacional , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptidos , Reproducibilidad de los Resultados , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus , Vacunas de Subunidad
7.
World J Microbiol Biotechnol ; 38(1): 8, 2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34837551

RESUMEN

Microalgae are potential feedstocks for the commercial production of carotenoids, however, the metabolic pathways for carotenoid biosynthesis across algal lineage are largely unexplored. This work is the first to provide a comprehensive survey of genes and enzymes associated with the less studied methylerythritol 4-phosphate/1-deoxy-D-xylulose 5-phosphate pathway as well as the carotenoid biosynthetic pathway in microalgae through bioinformatics and comparative genomics approach. Candidate genes/enzymes were subsequently analyzed across 22 microalgae species of lineages Chlorophyta, Rhodophyta, Heterokonta, Haptophyta, Cryptophyta, and known Arabidopsis homologs in order to study the evolutional divergence in terms of sequence-structure properties. A total of 403 enzymes playing a vital role in carotene, lutein, zeaxanthin, violaxanthin, canthaxanthin, and astaxanthin were unraveled. Of these, 85 were hypothetical proteins whose biological roles are not yet experimentally characterized. Putative functions to these hypothetical proteins were successfully assigned through a comprehensive investigation of the protein family, motifs, intrinsic physicochemical features, subcellular localization, pathway analysis, etc. Furthermore, these enzymes were categorized into major classes as per the conserved domain and gene ontology. Functional signature sequences were also identified which were observed conserved across microalgal genomes. Additionally, the structural modeling and active site architecture of three vital enzymes, DXR, PSY, and ZDS catalyzing the vital rate-limiting steps in Dunaliella salina were achieved. The enzymes were confirmed to be stereochemically reliable and stable as revealed during molecular dynamics simulation of 100 ns. The detailed functional information about individual vital enzymes will certainly help to design genetically modified algal strains with enhanced carotenoid contents.


Asunto(s)
Carotenoides/metabolismo , Genómica/métodos , Microalgas/enzimología , Proteínas/genética , Vías Biosintéticas , Dominio Catalítico , Biología Computacional , Minería de Datos , Evolución Molecular , Ontología de Genes , Microalgas/clasificación , Microalgas/metabolismo , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Proteínas/química , Proteínas/clasificación , Proteínas/metabolismo
8.
J Bacteriol ; 203(1)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33106344

RESUMEN

An essential feature of the pathogenesis of the Salmonella enterica serovar Enteritidis wild type (WT) is its ability to survive under diverse microenvironmental stress conditions, such as encountering antimicrobial peptides (AMPs) or glucose and micronutrient starvation. These stress factors trigger virulence genes carried on Salmonella pathogenicity islands (SPIs) and determine the efficiency of enteric infection. Although the oligosaccharide/oligonucleotide binding-fold (OB-fold) family of proteins has been identified as an important stress response and virulence determinant, functional information on members of this family is currently limited. In this study, we decipher the role of YdeI, which belongs to OB-fold family of proteins, in stress response and virulence of S Enteritidis. When ydeI was deleted, the ΔydeI mutant showed reduced survival during exposure to AMPs or glucose and Mg2+ starvation stress compared to the WT. Green fluorescent protein (GFP) reporter and quantitative real-time PCR (qRT-PCR) assays showed ydeI was transcriptionally regulated by PhoP, which is a major regulator of stress and virulence. Furthermore, the ΔydeI mutant displayed ∼89% reduced invasion into HCT116 cells, ∼15-fold-reduced intramacrophage survival, and downregulation of several SPI-1 and SPI-2 genes encoding the type 3 secretion system apparatus and effector proteins. The mutant showed attenuated virulence compared to the WT, confirmed by its reduced bacterial counts in feces, mesenteric lymph node (mLN), spleen, and liver of C57BL/6 mice. qRT-PCR analyses of the ΔydeI mutant displayed differential expression of 45 PhoP-regulated genes, which were majorly involved in metabolism, transport, membrane remodeling, and drug resistance under different stress conditions. YdeI is, therefore, an important protein that modulates S Enteritidis virulence and adaptation to stress during infection.IMPORTANCES Enteritidis during its life cycle encounters diverse stress factors inside the host. These intracellular conditions allow activation of specialized secretion systems to cause infection. We report a conserved membrane protein, YdeI, and elucidate its role in protection against various intracellular stress conditions. A key aspect of the study of a pathogen's stress response mechanism is its clinical relevance during host-pathogen interaction. Bacterial adaptation to stress plays a vital role in evolution of a pathogen's resistance to therapeutic agents. Therefore, investigation of the role of YdeI is vital for understanding the molecular basis of regulation of Salmonella pathogenesis. In conclusion, our findings may contribute to finding potential targets to develop new intervention strategies for treatment and prevention of enteric diseases.


Asunto(s)
Proteínas Bacterianas/fisiología , Infecciones por Salmonella/microbiología , Salmonella enteritidis/fisiología , Animales , Proteínas Bacterianas/química , Humanos , Ratones Endogámicos C57BL , Conformación Proteica , Salmonella enteritidis/patogenicidad , Estrés Fisiológico , Virulencia
9.
Plant Cell Physiol ; 61(5): 1019-1024, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32061129

RESUMEN

In light of increasing algal genomics data and knowledge of biosynthetic pathways responsible for biofuel production, an integrated resource for easy access to all information is essential to improve our understanding of algal lipid metabolism. Against this backdrop, dEMBF v2.0, a significantly updated and improved version of our database of microalgae lipid biosynthetic enzymes for biofuel production, has been developed. dEMBF v2.0 now contains a comprehensive annotation of 2018 sequences encoding 35 enzymes, an increase of over 7-fold as compared with the first version. Other improved features include an increase in species coverage to 32 algal genomes, analysis of additional metabolic pathways, expanded annotation thoroughly detailing sequence and structural features, including enzyme-ligand interactions, and integration of supporting experimental evidence to demonstrate the role of enzymes in increasing lipid content. Along with a complete redesign of the interface, the updated database provides several inbuilt tools and user-friendly functionalities for more interactive and dynamic visualization of data.


Asunto(s)
Biocombustibles/microbiología , Biomasa , Bases de Datos Factuales , Enzimas/metabolismo , Microalgas/enzimología , Internet , Anotación de Secuencia Molecular , Interfaz Usuario-Computador
10.
Mol Biol Rep ; 41(12): 8319-32, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25280541

RESUMEN

Lysophosphatidyl acyltransferase (LPAT) is one of the major triacylglycerol synthesis enzymes, controlling the metabolic flow of lysophosphatidic acid to phosphatidic acid. Experimental studies in Arabidopsis have shown that LPAT activity is exhibited primarily by three distinct isoforms, namely the plastid-located LPAT1, the endoplasmic reticulum-located LPAT2, and the soluble isoform of LPAT (solLPAT). In this study, 24 putative genes representing all LPAT isoforms were identified from the analysis of 11 complete genomes including green algae, red algae, diatoms and higher plants. We observed LPAT1 and solLPAT genes to be ubiquitously present in nearly all genomes examined, whereas LPAT2 genes to have evolved more recently in the plant lineage. Phylogenetic analysis indicated that LPAT1, LPAT2 and solLPAT have convergently evolved through separate evolutionary paths and belong to three different gene families, which was further evidenced by their wide divergence at gene structure and sequence level. The genome distribution supports the hypothesis that each gene encoding a LPAT is not duplicated. Mapping of exon-intron structure of LPAT genes to the domain structure of proteins across different algal and plant species indicates that exon shuffling plays no role in the evolution of LPAT genes. Besides the previously defined motifs, several conserved consensus sequences were discovered which could be useful to distinguish different LPAT isoforms. Taken together, this study will enable the generation of experimental approximations to better understand the functional role of algal LPAT in lipid accumulation.


Asunto(s)
Aciltransferasas/genética , Aciltransferasas/metabolismo , Chlorophyta/enzimología , Diatomeas/enzimología , Plantas/enzimología , Rhodophyta/enzimología , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Chlorophyta/genética , Secuencia Conservada , Diatomeas/genética , Evolución Molecular , Expresión Génica , Genoma , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Rhodophyta/genética , Triglicéridos/biosíntesis
11.
Protein J ; 43(1): 84-95, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38127182

RESUMEN

Klebsiella pneumoniae, a bacterial pathogen infamous for antibiotic resistance, is included in the priority list of pathogens by various public health organizations due to its extraordinary ability to develop multidrug resistance. Bacterial fatty acid biosynthesis pathway-II (FAS-II) has been considered a therapeutic drug target for antibacterial drug discovery. Inhibition of FAS-II enzyme, enoyl-acyl carrier protein reductase, FabI, not only inhibits bacterial infections but also reverses antibiotic resistance. Here, we characterized Klebsiella pneumoniae FabI (KpFabI) using complementary experimental approaches including, biochemical, x-ray crystallography, and molecular dynamics simulation studies. Biophysical studies shows that KpFabI organizes as a tetramer molecular assembly in solution as well as in the crystal structure. Enzyme kinetics studies reveal a distinct catalytic property towards crotonyl CoA and reducing cofactor NADH. Michaelis-Menten constant (Km) values of substrates show that KpFabI has higher preference towards NADH as compared to crotonyl CoA. The crystal structure of tetrameric apo KpFabI folds into a classic Rossman fold in which ß-strands are sandwiched between α-helices. A highly flexible substrate binding region is located toward the interior of the tetrameric assembly. Thermal stability assay on KpFabI with its substrate shows that the flexibility is primarily stabilized by cofactor NADH. Moreover, the molecular dynamics further supports that KpFabI has highly flexible regions at the substrate binding site. Together, these findings provide evidence for highly dynamic substrate binding sites in KpFabI, therefore, this information will be vital for specific inhibitors discovery targeting Klebsiella pneumoniae.


Asunto(s)
Enoil-ACP Reductasa (NADH) , Klebsiella pneumoniae , Enoil-ACP Reductasa (NADH)/química , Enoil-ACP Reductasa (NADH)/metabolismo , NAD/metabolismo , Sitios de Unión , Antibacterianos
12.
Clin Exp Vaccine Res ; 13(2): 132-145, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38752008

RESUMEN

Purpose: Enterovirus 71, a pathogen that causes hand-foot and mouth disease (HFMD) is currently regarded as an increasing neurotropic virus in Asia and can cause severe complications in pediatric patients with blister-like sores or rashes on the hand, feet, and mouth. Notwithstanding the significant burden of the disease, no authorized vaccine is available. Previously identified attenuated and inactivated vaccines are worthless over time owing to changes in the viral genome. Materials and Methods: A novel vaccine construct using B-cell derived T-cell epitopes from the virulent polyprotein found the induction of possible immune response. In order to boost the immune system, a beta-defensin 1 preproprotein adjuvant with EAAAK linker was added at the N-terminal end of the vaccine sequence. Results: The immunogenicity of the designed, refined, and verified prospective three-dimensional-structure of the multi-epitope vaccine was found to be quite high, exhibiting non-allergenic and antigenic properties. The vaccine candidates bound to toll-like receptor 3 in a molecular docking analysis, and the efficacy of the potential vaccine to generate a strong immune response was assessed through in silico immunological simulation. Conclusion: Computational analysis has shown that the proposed multi-epitope vaccine is possibly safe for use in humans and can elicit an immune response.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38457114

RESUMEN

The bacterial secretome represents a comprehensive catalog of proteins released extracellularly that have multiple important roles in virulence and intercellular communication. This study aimed to characterize the secretome of an environmental isolate Pseudomonas aeruginosa S-8 by analyzing trypsin-digested culture supernatant proteins using nano-LC-MS/MS tool. Using a combined approach of bioinformatics and mass spectrometry, 1088 proteins in the secretome were analyzed by PREDLIPO, SecretomeP 2.0, SignalP 4.1, and PSORTb tool for their subcellular localization and further categorization of secretome proteins according to signal peptides. Using the gene ontology tool, secretome proteins were categorized into different functional categories. KEGG pathway analysis identified the secreted proteins into different metabolic functional pathways. Moreover, our LC-MS/MS data revealed the secretion of various CAZymes into the extracellular milieu, which suggests its strong biotechnological applications to breakdown complex carbohydrate polymers. The identified immunodominant epitopes from the secretome of P. aeruginosa showed the characteristic of being non-allergenic, highly antigenic, nontoxic, and having a low risk of triggering autoimmune responses, which highlights their potential as successful vaccine targets. Overall, the identification of secreted proteins of P. aeruginosa could be important for both diagnostic purposes and the development of an effective candidate vaccine.

14.
Pathogens ; 12(3)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36986298

RESUMEN

Staphylococcus aureus is a human bacterial pathogen that can cause a wide range of symptoms. As virulent and multi-drug-resistant strains of S. aureus have evolved, invasive S. aureus infections in hospitals and the community have become one of the leading causes of mortality and morbidity. The development of novel techniques is therefore necessary to overcome this bacterial infection. Vaccines are an appropriate alternative in this context to control infections. In this study, the collagen-binding protein (CnBP) from S. aureus was chosen as the target antigen, and a series of computational methods were used to find epitopes that may be used in vaccine development in a systematic way. The epitopes were passed through a filtering pipeline that included antigenicity, toxicity, allergenicity, and cytokine inducibility testing, with the objective of identifying epitopes capable of eliciting both T and B cell-mediated immune responses. To improve vaccine immunogenicity, the final epitopes and phenol-soluble modulin α4 adjuvant were fused together using appropriate linkers; as a consequence, a multiepitope vaccine was developed. The chosen T cell epitope ensemble is expected to cover 99.14% of the global human population. Furthermore, docking and dynamics simulations were used to examine the vaccine's interaction with the Toll-like receptor 2 (TLR2), revealing great affinity, consistency, and stability between the two. Overall, the data indicate that the vaccine candidate may be extremely successful, and it will need to be evaluated in experimental systems to confirm its efficiency.

15.
Immunol Res ; 71(4): 639-662, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37022613

RESUMEN

Acinetobacter baumannii is one of the major pathogenic ESKAPE bacterium, which is responsible for about more than 722,000 cases in a year, globally. Despite the alarming increase in multidrug resistance, a safe and effective vaccine for Acinetobacter infections is still not available. Hence in the current study, a multiepitope vaccine construct was developed using linear B cell, cytotoxic T cell, and helper T cell epitopes from the antigenic and well-conserved lipopolysaccharide assembly proteins employing systematic immunoinformatics and structural vaccinology strategies. The multi-peptide vaccine was predicted to be highly antigenic, non-allergenic, non-toxic, and cover maximum population coverage worldwide. Further, the vaccine construct was modeled along with adjuvant and peptide linkers and validated to achieve a high-quality three-dimensional structure which was subsequently utilized for cytokine prediction, disulfide engineering, and docking analyses with Toll-like receptor (TLR4). Ramachandran plot showed 98.3% of the residues were located in the most favorable and permitted regions, thereby corroborating the feasibility of the modeled vaccine construct. Molecular dynamics simulation for a 100 ns timeframe further confirmed the stability of the binding vaccine-receptor complex. Finally, in silico cloning and codon adaptation were also performed with the pET28a (+) plasmid vector to determine the efficiency of expression and translation of the vaccine. Immune simulation studies demonstrated that the vaccine could trigger both B and T cell responses and can elicit strong primary, secondary, and tertiary immune responses. The designed multi-peptide subunit vaccine would certainly expedite the experimental approach for the development of a vaccine against A. baumannii infection.


Asunto(s)
Acinetobacter baumannii , Vacunas de Subunidad , Epítopos de Linfocito T/genética , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos
16.
Gene ; 863: 147248, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-36738898

RESUMEN

Salmonellosis, a food-borne illnesses caused by enteropathogenic bacterium Salmonella spp., is a continuous concern in both developed and developing countries. This study was carried out to perform an in-depth examination of an MDR Salmonella strain isolated from gastroenteritis patients in Odisha, India, in order to understand the genomic architecture, distribution of pathogenic island regions, and virulence factor diversity. Fecal samples were obtained from individuals with acute gastroenteritis and further subjected to panel of biochemical tests. The IlluminaHiSeq X sequencer system was used to generate whole-genome sequencing. The draft genome was submitted to gene prediction and annotation using RAST annotation system. Pathogenicity Island database and bioinformatics pipeline were used to find Salmonella pathogenicity islands (SPI) from the built scaffold. The gene expression in SPI1 and SPI2 encoded regions was investigated using qRT-PCR. The taxonomic position of Salmonella enterica subsp. enterica serovar Typhimurium was validated by serotype analysis and 16S rRNA based phylogenetic analysis. The de-novo genome assembly showed total length of 5,034,110 bp and produced 37 contigs. There are nine prophage areas, comprising of 12 regions and scaffold 8 contained a single plasmid, IncFIB. The isolate contains six known SPI genes content which was shown to be largely conserved from SPI1 to SPI2. We identified the sit ABCD cluster regulatory cascade and acquired antibiotic resistance genes in S. enterica Typhimurium ms204. Further research may aid in the correct diagnosis and monitoring of MDR Salmonella strains with a variety of physiological activities.


Asunto(s)
Gastroenteritis , Salmonella enterica , Humanos , Salmonella typhimurium/genética , Salmonella enterica/genética , Filogenia , ARN Ribosómico 16S , Proteínas Bacterianas/genética , Resistencia a Múltiples Medicamentos , Expresión Génica , Farmacorresistencia Bacteriana Múltiple/genética , Antibacterianos
17.
Plant Sci ; 334: 111749, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37244501

RESUMEN

Proline-rich extensin-like receptor kinases (PERKs) play a crucial role in a wide range of biological processes in plants. In model plants like Arabidopsis, the PERK gene family has been well investigated. Conversely, no information available on the PERK gene family and their biological functions largely remained unknown in rice. This study analyzed the basic physicochemical properties, phylogeny, gene structure, cis-acting elements, Gene ontology (GO) annotation and protein-protein interaction of OsPERK gene family members using various bioinformatics tools based on the whole-genome data of O. sativa. Thus, in this work, 8 PERK genes in rice were identified, and their roles in plant development, growth, and response to various stresses were studied. A phylogenetic study revealed that OsPERKs are grouped into seven classes. Chromosomal mapping also displayed that 8 PERK genes were unevenly distributed on 12 chromosomes. Further, the prediction of subcellular localization indicated that OsPERKs were mainly located at the endomembrane system. Gene structure analysis of OsPERKs has shown a distinctive evolutionary path. In addition, synteny analysis exhibited the 40 orthologous gene pairs in Arabidopsis thaliana, Triticum aestivum, Hordeum vulgare and Medicago truncatula. Furthermore, Ka to Ks proportion shows that most OsPERK genes experienced resilient purifying selection during evolutionary processes. The OsPERK promoters contained several cis-acting regulatory, which are crucial for plant development processes, phytohormone signaling, stress, and defense response. Moreover, the expression pattern of OsPERK family members showed differential expression patterns in different tissues and various stress conditions. Taken together, these results provide clear messages for a better understanding the roles of OsPERK genes in various development stages, tissues, and multifactorial stress as well as enriched the related research of OsPERK family members in rice.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Genoma de Planta/genética , Filogenia , Estrés Fisiológico/genética , Desarrollo de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Perfilación de la Expresión Génica/métodos
18.
IEEE J Biomed Health Inform ; 27(6): 2782-2793, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37023159

RESUMEN

During COVID-19 pandemic qRT-PCR, CT scans and biochemical parameters were studied to understand the patients' physiological changes and disease progression. There is a lack of clear understanding of the correlation of lung inflammation with biochemical parameters available. Among the 1136 patients studied, C-reactive-protein (CRP) is the most critical parameter for classifying symptomatic and asymptomatic groups. Elevated CRP is corroborated with increased D-dimer, Gamma-glutamyl-transferase (GGT), and urea levels in COVID-19 patients. To overcome the limitations of manual chest CT scoring system, we segmented the lungs and detected ground-glass-opacity (GGO) in specific lobes from 2D CT images by 2D U-Net-based deep learning (DL) approach. Our method shows accuracy, compared to the manual method (  âˆ¼ 80%), which is subjected to the radiologist's experience. We determined a positive correlation of GGO in the right upper-middle (0.34) and lower (0.26) lobe with D-dimer. However, a modest correlation was observed with CRP, ferritin and other studied parameters. The final Dice Coefficient (or the F1 score) and Intersection-Over-Union for testing accuracy are 95.44% and 91.95%, respectively. This study can help reduce the burden and manual bias besides increasing the accuracy of GGO scoring. Further study on geographically diverse large populations may help to understand the association of the biochemical parameters and pattern of GGO in lung lobes with different SARS-CoV-2 Variants of Concern's disease pathogenesis in these populations.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , COVID-19/diagnóstico por imagen , SARS-CoV-2 , Pandemias , Estudios Retrospectivos , Pulmón/diagnóstico por imagen
19.
J Biomol Struct Dyn ; 40(22): 11989-12007, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34415234

RESUMEN

Microalgae as an alternative renewable resource for biofuel production have captured much significance. Nonetheless, its economic viability is a field of major concern for researchers. Unraveling the lipid catabolic pathway and gaining insights into the sequence-structural features of its primary functioning enzyme, Triacylglycerol lipase, will impart valuable information to target microalgae for augmented lipid content. In the present study, a genome-wide comparative study on putative Triacylglycerol lipase (TAGL) enzyme from algal species belonging to varied phylogenetic lineages was performed. The comprehensive sequence analysis revealed that TAGL comprises of three distinct conserved domains, such as, Patatin, Class III Lipase, and Abhydro_lipase, and also confirmed the ubiquitous presence of GXSXG motif in the sequences analyzed. In the absence of a crystal structure of algal TAGL till date, we developed the first 3D model of patatin domain of TAGL from an oleaginous microalga, Phaedactylum tricornutum, employing homology modeling, docking and molecular dynamic simulations methods. The domain-substrate complex having the low-ranking docking score revealed the binding of palmitic acid to the TAGL patatin domain surface with strong hydrogen bond interactions. The simulation results implied that the substrate-complexed patatin domain and the free enzyme adopted a more stable conformation after 40 ns. This is the first ever attempt to provide in-silico insights into the structural and dynamical insights on catalytic mechanism of the TAGL patatin domain. Subsequently, these findings aided our understanding on their structural stability, folding mechanism and protein-substrate interactions, which could be further utilized to design site-specific mutagenic experiments for engineering microalgal strains.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Lipasa , Plantas , Lipasa/genética , Filogenia , Plantas/metabolismo , Simulación de Dinámica Molecular , Lípidos
20.
Expert Rev Vaccines ; 21(4): 569-587, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34932430

RESUMEN

BACKGROUND: Klebsiella pneumoniae is an emerging human pathogen causing neonatal lung disease, catheter-associated infections, and nosocomial outbreaks with high fatality rates. Capsular polysaccharide (CPS) protein plays a major determinant in virulence and is considered as a promising target for vaccine development. RESEARCH DESIGN AND METHODS: In this study, we used immunoinformatic approaches to design a multi-peptide vaccine against K. pneumonia. The epitopes were selected through several immune filters, such as antigenicity, conservancy, nontoxicity, non-allergenicity, binding affinity to HLA alleles, overlapping epitopes, and peptides having common epitopes. RESULTS: Finally, a construct comprising 2 B-Cell, 8 CTL, 2 HTL epitopes, along with adjuvant, linkers was designed. Peptide-HLA interaction analysis showed strong binding of these epitopes with several common HLA molecules. The in silico immune simulation and population coverage analysis of the vaccine showed its potential to evoke strong immune responses.. Further, the interaction between vaccine and immune was evaluated by docking and simulation, revealing high affinity and complex stability. Codon adaptation and in silico cloning revealed higher expression of vaccine in E. coli K12 expression system. CONCLUSIONS: Conclusively, the findings of the present study suggest that the designed novel multi-epitopic vaccine holds potential for further experimental validation against the pathogen.


Asunto(s)
Vacunas Bacterianas/inmunología , Infecciones por Klebsiella/prevención & control , Klebsiella pneumoniae , Neumonía Bacteriana/prevención & control , Biología Computacional , Epítopos de Linfocito B , Epítopos de Linfocito T , Escherichia coli , Humanos , Recién Nacido , Simulación del Acoplamiento Molecular , Polisacáridos , Vacunas de Subunidad/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA