RESUMEN
Material functionality can be strongly determined by structure extending only over nanoscale distances. The pair distribution function presents an opportunity for structural studies beyond idealized crystal models and to investigate structure over varying length scales. Applying this method with ultrafast time resolution has the potential to similarly disrupt the study of structural dynamics and phase transitions. Here we demonstrate such a measurement of CuIr2S4 optically pumped from its low-temperature Ir-dimerized phase. Dimers are optically suppressed without spatial correlation, generating a structure whose level of disorder strongly depends on the length scale. The redevelopment of structural ordering over tens of picoseconds is directly tracked over both space and time as a transient state is approached. This measurement demonstrates the crucial role of local structure and disorder in non-equilibrium processes as well as the feasibility of accessing this information with state-of-the-art XFEL facilities.
RESUMEN
We report the discovery of a novel form of Ruddlesden-Popper (RP) nickelate that stands as the first example of long-range, coherent polymorphism in this class of inorganic solids. Rather than the well-known, uniform stacking of perovskite blocks ubiquitously found in RP phases, this newly discovered polymorph of the bilayer RP phase La3Ni2O7 adopts a novel stacking sequence in which single-layer and trilayer blocks of NiO6 octahedra alternate in a "1313" sequence. Crystals of this new polymorph are described in space group Cmmm, although we note evidence for a competing Imam variant. Transport measurements at ambient pressure reveal metallic character with evidence of a charge density wave transition with an onset at T ≈ 134 K. The discovery of such polymorphism could reverberate to the expansive range of science and applications that rely on RP materials, particularly the recently reported signatures of superconductivity in bilayer La3Ni2O7 with Tc as high as 80 K above 14 GPa.
RESUMEN
Polarons-fermionic charge carriers bearing a strong companion lattice deformation-exhibit a natural tendency for self-localization due to the recursive interaction between electrons and the lattice. While polarons are ubiquitous in insulators, how they evolve in transitions to metallic and superconducting states in quantum materials remains an open question. Here, we use resonant inelastic x-ray scattering to track the electron-lattice coupling in the colossal magneto-resistive bi-layer manganite La_{1.2}Sr_{1.8}Mn_{2}O_{7} across its metal-to-insulator transition. The response in the insulating high-temperature state features harmonic emissions of a dispersionless oxygen phonon at small energy transfer. Upon cooling into the metallic state, we observe a drastic redistribution of spectral weight from the region of these harmonic emissions to a broad high energy continuum. In concert with theoretical calculations, we show that this evolution implies a shift in electron-lattice coupling from static to dynamic lattice distortions that leads to a distinct polaronic ground state in the low temperature metallic phase-a dynamic polaron liquid.
RESUMEN
Measurement of picometer-scale atomic displacements by aberration-corrected STEM has become invaluable in the study of crystalline materials, where it can elucidate ordering mechanisms and local heterogeneities. HAADF-STEM imaging, often used for such measurements due to its atomic number contrast, is generally considered insensitive to light atoms such as oxygen. Light atoms, however, still affect the propagation of the electron beam in the sample and, therefore, the collected signal. Here, we demonstrate experimentally and through simulations that cation sites in distorted perovskites can appear to be displaced by several picometers from their true positions in shared cation-anion columns. The effect can be decreased through careful choice of sample thickness and beam voltage or can be entirely avoided if the experiment allows reorientation of the crystal along a more favorable zone axis. Therefore, it is crucial to consider the possible effects of light atoms and crystal symmetry and orientation when measuring atomic positions.
RESUMEN
The recently discovered layered kagome metals of composition AV_{3}Sb_{5} (A=K, Rb, Cs) exhibit a complex interplay among superconductivity, charge density wave order, topologically nontrivial electronic band structure and geometrical frustration. Here, we probe the electronic band structure underlying these exotic correlated electronic states in CsV_{3}Sb_{5} with quantum oscillation measurements in pulsed fields up to 86 T. The high-field data reveal a sequence of magnetic breakdown orbits that allows the construction of a model for the folded Fermi surface of CsV_{3}Sb_{5}. The dominant features are large triangular Fermi surface sheets that cover almost half the folded Brillouin zone. These sheets have not yet been detected in angle resolved photoemission spectroscopy and display pronounced nesting. The Berry phases of the electron orbits have been deduced from Landau level fan diagrams near the quantum limit without the need for extrapolations, thereby unambiguously establishing the nontrivial topological character of several electron bands in this kagome lattice superconductor.
RESUMEN
Perovskite oxides are an important class of oxygen evolution reaction (OER) catalysts in alkaline media, despite the elusive nature of their active sites. Here, we demonstrate that the origin of the OER activity in a La1-xSrxCoO3 model perovskite arises from a thin surface layer of Co hydr(oxy)oxide (CoOxHy) that interacts with trace-level Fe species present in the electrolyte, creating dynamically stable active sites. Generation of the hydr(oxy)oxide layer is a consequence of a surface evolution process driven by the A-site dissolution and O-vacancy creation. In turn, this imparts a 10-fold improvement in stability against Co dissolution and a 3-fold increase in the activity-stability factor for CoOxHy/LSCO when compared to nanoscale Co-hydr(oxy)oxides clusters. Our results suggest new design rules for active and stable perovskite oxide-based OER materials.
RESUMEN
Superelasticity associated with the martensitic transformation has found a broad range of engineering applications1,2. However, the intrinsic hysteresis3 and temperature sensitivity4 of the first-order phase transformation significantly hinder the usage of smart metallic components in many critical areas. Here, we report a large superelasticity up to 15.2% strain in [001]-oriented NiCoFeGa single crystals, exhibiting non-hysteretic mechanical responses, a small temperature dependence and high-energy-storage capability and cyclic stability over a wide temperature and composition range. In situ synchrotron X-ray diffraction measurements show that the superelasticity is correlated with a stress-induced continuous variation of lattice parameter accompanied by structural fluctuation. Neutron diffraction and electron microscopy observations reveal an unprecedented microstructure consisting of atomic-level entanglement of ordered and disordered crystal structures, which can be manipulated to tune the superelasticity. The discovery of the large elasticity related to the entangled structure paves the way for exploiting elastic strain engineering and development of related functional materials.
RESUMEN
The discovery of superconductivity in a d^{9-δ} nickelate has inspired disparate theoretical perspectives regarding the essential physics of this class of materials. A key issue is the magnitude of the magnetic superexchange, which relates to whether cuprate-like high-temperature nickelate superconductivity could be realized. We address this question using Ni L-edge and O K-edge spectroscopy of the reduced d^{9-1/3} trilayer nickelates R_{4}Ni_{3}O_{8} (where R=La, Pr) and associated theoretical modeling. A magnon energy scale of â¼80 meV resulting from a nearest-neighbor magnetic exchange of J=69(4) meV is observed, proving that d^{9-δ} nickelates can host a large superexchange. This value, along with that of the Ni-O hybridization estimated from our O K-edge data, implies that trilayer nickelates represent an intermediate case between the infinite-layer nickelates and the cuprates. Layered nickelates thus provide a route to testing the relevance of superexchange to nickelate superconductivity.
RESUMEN
Dirac and Weyl semimetals host exotic quasiparticles with unconventional transport properties, such as high magnetoresistance and carrier mobility. Recent years have witnessed a huge number of newly predicted topological semimetals from existing databases; however, experimental verification often lags behind such predictions. Common reasons are synthetic difficulties or the stability of predicted phases. Here, we report the synthesis of the type-II Dirac semimetal Ir2In8S, an air-stable compound with a new structure type. This material has two Dirac crossings in its electronic structure along the Γ-Z direction of the Brillouin zone. We further show that Ir2In8S has a high electron carrier mobility of â¼10â¯000 cm2/(V s) at 1.8 K and a large, nonsaturating transverse magnetoresistance of â¼6000% at 3.34 K in a 14 T applied field. Shubnikov de-Haas oscillations reveal several small Fermi pockets and the possibility of a nontrivial Berry phase. With its facile crystal growth, novel structure type, and striking electronic structure, Ir2In8S introduces a new material system to study topological semimetals and enable advances in the field of topological materials.
RESUMEN
We studied the magnetic ordering of thin films and bulk crystals of rutile RuO_{2} using resonant x-ray scattering across the Ru L_{2} absorption edge. Combining polarization analysis and azimuthal angle dependence of the magnetic Bragg signal, we have established the presence and characteristic of collinear antiferromagnetism in RuO_{2} with T_{N}>300 K. In addition to revealing a spin-ordered ground state in the simplest ruthenium oxide compound, the persistence of magnetic order even in nanometer-thick films lays the ground for potential applications of RuO_{2} in antiferromagnetic spintronics.
RESUMEN
Trilayer nickelates, which exhibit a high degree of orbital polarization combined with an electron count (d^{8.67}) corresponding to overdoped cuprates, have been identified as a promising candidate platform for achieving high-T_{c} superconductivity. One such material, La_{4}Ni_{3}O_{8}, undergoes a semiconductor-insulator transition at â¼105 K, which was recently shown to arise from the formation of charge stripes. However, an outstanding issue has been the origin of an anomaly in the magnetic susceptibility at the transition and whether it signifies the formation of spin stripes akin to single layer nickelates. Here we report single crystal neutron diffraction measurements (both polarized and unpolarized) that establish that the ground state is indeed magnetic. The ordering is modeled as antiferromagnetic spin stripes that are commensurate with the charge stripes, the magnetic ordering occurring in individual trilayers that are essentially uncorrelated along the crystallographic c axis. A comparison of the charge and spin stripe order parameters reveals that, in contrast to single-layer nickelates such as La_{2-x}Sr_{x}NiO_{4} as well as related quasi-2D oxides including manganites, cobaltates, and cuprates, these orders uniquely appear simultaneously, thus demonstrating a stronger coupling between spin and charge than in these related low-dimensional correlated oxides.
RESUMEN
The quasi-2D nickelate La4Ni3O8 (La-438), consisting of trilayer networks of square planar Ni ions, is a member of the so-called T' family, which is derived from the Ruddlesden-Popper (R-P) parent compound La4Ni3O10-x by removing two oxygen atoms and rearranging the rock salt layers to fluorite-type layers. Although previous studies on polycrystalline samples have identified a 105-K phase transition with a pronounced electronic and magnetic response but weak lattice character, no consensus on the origin of this transition has been reached. Here, we show using synchrotron X-ray diffraction on high-pO2 floating zone-grown single crystals that this transition is associated with a real space ordering of charge into a quasi-2D charge stripe ground state. The charge stripe superlattice propagation vector, q = (2/3, 0, 1), corresponds with that found in the related 1/3-hole doped single-layer R-P nickelate, La5/3Sr1/3NiO4 (LSNO-1/3; Ni(2.33+)), with orientation at 45° to the Ni-O bonds. The charge stripes in La-438 are weakly correlated along c to form a staggered ABAB stacking that reduces the Coulomb repulsion among the stripes. Surprisingly, however, we find that the charge stripes within each trilayer of La-438 are stacked in phase from one layer to the next, at odds with any simple Coulomb repulsion argument.
RESUMEN
An electromagnon in the magnetoelectric (ME) hexaferrite Ba_{0.5}Sr_{2.5}Co_{2}Fe_{24}O_{41} (Co_{2}Z-type) single crystal is identified by time-domain terahertz (THz) spectroscopy. The associated THz resonance is active on the electric field (E^{ω}) of the THz light parallel to the c axis (⥠[001]), whose spectral weight develops at a markedly high temperature, coinciding with a transverse conical magnetic order below 410 K. The resonance frequency of 1.03 THz at 20 K changes -8.7% and +5.8% under external magnetic field (H) of 2 kOe along [001] and [120], respectively. A model Hamiltonian describing the conical magnetic order elucidates that the dynamical ME effect arises from antiphase motion of spins which are coupled with modulating electric dipoles through the exchange striction mechanism. Moreover, the calculated frequency shift points to the key role of the Dzyaloshinskii-Moriya interaction that is altered by static electric polarization change under different H.
RESUMEN
Rapid shifts in the energy, technological, and environmental demands of materials science call for focused and efficient expansion of the library of functional inorganic compounds. To achieve the requisite efficiency, we need a materials discovery and optimization paradigm that can rapidly reveal all possible compounds for a given reaction and composition space. Here we provide such a paradigm via in situ X-ray diffraction measurements spanning solid, liquid flux, and recrystallization processes. We identify four new ternary sulfides from reactive salt fluxes in a matter of hours, simultaneously revealing routes for ex situ synthesis and crystal growth. Changing the flux chemistry, here accomplished by increasing sulfur content, permits comparison of the allowable crystalline building blocks in each reaction space. The speed and structural information inherent to this method of in situ synthesis provide an experimental complement to computational efforts to predict new compounds and uncover routes to targeted materials by design.
RESUMEN
An extreme magnetoresistance (XMR) has recently been observed in several nonmagnetic semimetals. Increasing experimental and theoretical evidence indicates that the XMR can be driven by either topological protection or electron-hole compensation. Here, by investigating the electronic structure of a XMR material, YSb, we present spectroscopic evidence for a special case which lacks topological protection and perfect electron-hole compensation. Further investigations reveal that a cooperative action of a substantial difference between electron and hole mobility and a moderate carrier compensation might contribute to the XMR in YSb.
RESUMEN
We investigated the surfaces of magnetoresistive manganites, La(1-x)Ca(x)MnO3 and La(2-2x)Sr(1+2x)Mn2O7, using a combination of ultrahigh vacuum conductive, electrostatic and magnetic force microscopy methods. Scanning as-grown film with a metal tip, even with zero applied bias, was found to modify the surface electronic properties such that in subsequent scans, the conductivity is reduced below the noise level of conductive probe microscopy. Scanned areas also reveal a reduced contact potential difference relative to the pristine surface by â¼0.3 eV. We propose that contact-pressure of the tip modifies the electrochemical potential of oxygen vacancies via the Vegard effect, causing vacancy motion and concomitant changes of the electronic properties.
RESUMEN
Electronic phases with stripe patterns have been intensively investigated for their vital roles in unique properties of correlated electronic materials. How these real-space patterns affect the conductivity and other properties of materials (which are usually described in momentum space) is one of the major challenges of modern condensed matter physics. By studying the electronic structure of La(2-2x)Sr(1+2x)Mn(2)O(7) (x â¼ 0.59) and in combination with earlier scattering measurements, we demonstrate the variation of electronic properties accompanying the melting of so-called bi-stripes in this material. The static bi-stripes can strongly localize the electrons in the insulating phase above T(c) â¼ 160 K, while the fraction of mobile electrons grows, coexisting with a significant portion of localized electrons when the static bi-stripes melt below T(c). The presence of localized electrons below T(c) suggests that the melting bi-stripes exist as a disordered or fluctuating counterpart. From static to melting, the bi-stripes act as an atomic-scale electronic valve, leading to a "colossal" metal-insulator transition in this material.
Asunto(s)
Conductividad Eléctrica , Electrones , Compuestos de Manganeso/química , Cristalización , CongelaciónRESUMEN
To date, it is unclear whether chemical order (or disorder) is in any way connected to double exchange, electronic phase separation, or charge ordering (CO) in manganites. In this work, we carry out an atomic resolution study of the colossal magnetoresistant manganite La(2-2x)Sr(1+2x)Mn2O7 (LSMO). We combine aberration-corrected electron microscopy and spectroscopy with spectroscopic image simulations, to analyze cation ordering at the atomic scale in real space in a number of LSMO single crystals. We compare three different compositions within the phase diagram: a ferromagnetic metallic material (x=0.36), an insulating, antiferromagnetic charge ordered (AF-CO) compound (x=0.5), which also exhibits orbital ordering, and an additional AF sample (x=0.56). Detailed image simulations are essential to accurately quantify the degree of chemical ordering of these samples. We find a significant degree of long-range chemical ordering in all cases, which increases in the AF-CO range. However, the degree of ordering is never complete nor can it explain the strongly correlated underlying ordering phenomena. Our results show that chemical ordering over distinct crystallographic sites is not needed for electronic ordering phenomena to appear in manganites, and cannot by itself explain the complex electronic behavior of LSMO.
RESUMEN
Understanding the microscopic origin of the superior electromechanical response in relaxor ferroelectrics requires knowledge not only of the atomic-scale formation of polar nanodomains (PNDs) but also the rules governing the arrangements and stimulated response of PNDs over longer distances. Using x-ray coherent nanodiffraction, we show the staggered self-assembly of PNDs into unidirectional mesostructures that we refer to as polar laminates in the relaxor ferroelectric 0.68PbMg1/3Nb2/3O3-0.32PbTiO3 (PMN-0.32PT). We reveal the highly heterogeneous electric-field-driven responses of intra- and interlaminate PNDs and establish their correlation with the local strain and the nature of the PND walls. Our observations highlight the critical role of hierarchical lattice organizations on macroscopic material properties and provide guiding principles for the understanding and design of relaxors and a wide range of quantum and functional materials.