Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 295(38): 13277-13286, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32723862

RESUMEN

The EAG (ether-à-go-go) family of voltage-gated K+ channels are important regulators of neuronal and cardiac action potential firing (excitability) and have major roles in human diseases such as epilepsy, schizophrenia, cancer, and sudden cardiac death. A defining feature of EAG (Kv10-12) channels is a highly conserved domain on the N terminus, known as the eag domain, consisting of a Per-ARNT-Sim (PAS) domain capped by a short sequence containing an amphipathic helix (Cap domain). The PAS and Cap domains are both vital for the normal function of EAG channels. Using heme-affinity pulldown assays and proteomics of lysates from primary cortical neurons, we identified that an EAG channel, hERG3 (Kv11.3), binds to heme. In whole-cell electrophysiology experiments, we identified that heme inhibits hERG3 channel activity. In addition, we expressed the Cap and PAS domain of hERG3 in Escherichia coli and, using spectroscopy and kinetics, identified the PAS domain as the location for heme binding. The results identify heme as a regulator of hERG3 channel activity. These observations are discussed in the context of the emerging role for heme as a regulator of ion channel activity in cells.


Asunto(s)
Corteza Cerebral/química , Canales de Potasio Éter-A-Go-Go/química , Hemo/química , Neuronas/química , Corteza Cerebral/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo , Hemo/metabolismo , Humanos , Neuronas/metabolismo , Unión Proteica , Dominios Proteicos
2.
Proc Natl Acad Sci U S A ; 113(14): 3785-90, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27006498

RESUMEN

Heme iron has many and varied roles in biology. Most commonly it binds as a prosthetic group to proteins, and it has been widely supposed and amply demonstrated that subtle variations in the protein structure around the heme, including the heme ligands, are used to control the reactivity of the metal ion. However, the role of heme in biology now appears to also include a regulatory responsibility in the cell; this includes regulation of ion channel function. In this work, we show that cardiac KATP channels are regulated by heme. We identify a cytoplasmic heme-binding CXXHX16H motif on the sulphonylurea receptor subunit of the channel, and mutagenesis together with quantitative and spectroscopic analyses of heme-binding and single channel experiments identified Cys628 and His648 as important for heme binding. We discuss the wider implications of these findings and we use the information to present hypotheses for mechanisms of heme-dependent regulation across other ion channels.


Asunto(s)
Hemo/metabolismo , Canales KATP/metabolismo , Receptores de Sulfonilureas/química , Secuencias de Aminoácidos/genética , Animales , Línea Celular , Células HEK293 , Humanos , Canales KATP/genética , Miocardio/metabolismo , Unión Proteica/genética , Estructura Terciaria de Proteína , Ratas , Ratas Wistar , Receptores de Sulfonilureas/genética
3.
Biochemistry ; 57(18): 2611-2622, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29505720

RESUMEN

The paralogues TRPV5 and TRPV6 belong to the vanilloid subfamily of the transient receptor potential (TRP) superfamily of ion channels, and both play an important role in overall Ca2+ homeostasis. The functioning of the channels centers on a tightly controlled Ca2+-dependent feedback mechanism in which the direct binding of the universal Ca2+-binding protein calmodulin (CaM) to the channel's C-terminal tail is required for channel inactivation. We have investigated this interaction at the atomic level and propose that under basal cellular Ca2+ concentrations CaM is constitutively bound to the channel's C-tail via CaM C-lobe only contacts. When the cytosolic Ca2+ concentration increases charging the apo CaM N-lobe with Ca2+, the CaM:TRPV6 complex rearranges and the TRPV6 C-tail further engages the CaM N-lobe via a crucial interaction involving L707. In a cellular context, mutation of L707 significantly increased the rate of channel inactivation. Finally, we present a model for TRPV6 CaM-dependent inactivation, which involves a novel so-called "two-tail" mechanism whereby CaM bridges two TRPV6 monomers resulting in closure of the channel pore.


Asunto(s)
Calcio/química , Calmodulina/química , Complejos Multiproteicos/química , Canales Catiónicos TRPV/química , Secuencia de Aminoácidos/genética , Animales , Sitios de Unión , Calcio/metabolismo , Señalización del Calcio/genética , Calmodulina/metabolismo , Células HEK293 , Humanos , Complejos Multiproteicos/genética , Mutación , Unión Proteica , Conformación Proteica , Ratas , Canales Catiónicos TRPV/genética
5.
J Biol Chem ; 291(34): 17907-18, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27325704

RESUMEN

The ether à go-go family of voltage-gated potassium channels is structurally distinct. The N terminus contains an eag domain (eagD) that contains a Per-Arnt-Sim (PAS) domain that is preceded by a conserved sequence of 25-27 amino acids known as the PAS-cap. The C terminus contains a region with homology to cyclic nucleotide binding domains (cNBHD), which is directly linked to the channel pore. The human EAG1 (hEAG1) channel is remarkably sensitive to inhibition by intracellular calcium (Ca(2+) i) through binding of Ca(2+)-calmodulin to three sites adjacent to the eagD and cNBHD. Here, we show that the eagD and cNBHD interact to modulate Ca(2+)-calmodulin as well as voltage-dependent gating. Sustained elevation of Ca(2+) i resulted in an initial profound inhibition of hEAG1 currents, which was followed by a phase when current amplitudes partially recovered, but activation gating was slowed and shifted to depolarized potentials. Deletion of either the eagD or cNBHD abolished the inhibition by Ca(2+) i However, deletion of just the PAS-cap resulted in a >15-fold potentiation in response to elevated Ca(2+) i Mutations of residues at the interface between the eagD and cNBHD have been linked to human cancer. Glu-600 on the cNBHD, when substituted with residues with a larger volume, resulted in hEAG1 currents that were profoundly potentiated by Ca(2+) i in a manner similar to the ΔPAS-cap mutant. These findings provide the first evidence that eagD and cNBHD interactions are regulating Ca(2+)-dependent gating and indicate that the binding of the PAS-cap with the cNBHD is required for the closure of the channels upon CaM binding.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo , Secuencia de Aminoácidos , Animales , Calmodulina/genética , Canales de Potasio Éter-A-Go-Go/genética , Humanos , Dominios Proteicos , Eliminación de Secuencia , Xenopus laevis
6.
Mol Pharmacol ; 87(2): 183-96, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25411366

RESUMEN

KV11.1 (hERG1) channels are often overexpressed in human cancers. In leukemias, KV11.1 regulates pro-survival signals that promote resistance to chemotherapy, raising the possibility that inhibitors of KV11.1 could be therapeutically beneficial. However, because of the role of KV11.1 in cardiac repolarization, blocking these channels may cause cardiac arrhythmias. We show that CD-160130, a novel pyrimido-indole compound, blocks KV11.1 channels with a higher efficacy for the KV11.1 isoform B, in which the IC50 (1.8 µM) was approximately 10-fold lower than observed in KV11.1 isoform A. At this concentration, CD-160130 also had minor effects on Kir2.1, KV 1.3, Kv1.5, and KCa3.1. In vitro, CD-160130 induced leukemia cell apoptosis, and could overcome bone marrow mesenchymal stromal cell (MSC)-induced chemoresistance. This effect was caused by interference with the survival signaling pathways triggered by MSCs. In vivo, CD-160130 produced an antileukemic activity, stronger than that caused by cytarabine. Consistent with its atypical target specificity, CD-160130 did not bind to the main binding site of the arrhythmogenic KV11.1 blockers (the Phe656 pore residue). Importantly, in guinea pigs CD-160130 produced neither alteration of the cardiac action potential shape in dissociated cardiomyocytes nor any lengthening of the QT interval in vivo. Moreover, CD-160130 had no myelotoxicity on human bone marrow-derived cells. Therefore, CD-160130 is a promising first-in-class compound to attempt oncologic therapy without cardiotoxicity, based on targeting KV11.1. Because leukemia and cardiac cells tend to express different ratios of the A and B KV11.1 isoforms, the pharmacological properties of CD-160130 may depend, at least in part, on isoform specificity.


Asunto(s)
Antineoplásicos/farmacología , Cardiotoxinas , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Indoles/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinonas/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/metabolismo , Femenino , Cobayas , Células HEK293 , Células HL-60 , Humanos , Indoles/química , Indoles/uso terapéutico , Leucemia de Células B/tratamiento farmacológico , Leucemia de Células B/metabolismo , Leucemia de Células B/patología , Masculino , Ratones , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Pirimidinas/uso terapéutico , Pirimidinonas/química , Pirimidinonas/uso terapéutico , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
7.
Mol Pharmacol ; 86(2): 211-21, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24830940

RESUMEN

Both human ether-à-go-go-related gene (hERG1) and the closely related human ether-à-go-go (hEAG1) channel are aberrantly expressed in a large proportion of human cancers. In the present study, we demonstrate that transfection of hERG1 into mouse fibroblasts is sufficient to induce many features characteristic of malignant transformation. An important finding of this work is that this transformation could be reversed by chronic incubation (for 2-3 weeks) with the hERG channel blocker dofetilide (100 nM), whereas more acute applications (for 1-2 days) were ineffective. The hERG1 expression resulted in a profound loss of cell contact inhibition, multiple layers of overgrowing cells, and high saturation densities. Cells also changed from fibroblast-like to a more spindle-shaped morphology, which was associated with a smaller cell size, a dramatic increase in cell polarization, a reduction in the number of actin stress fibers, and less punctate labeling of focal adhesions. Analysis of single-cell migration and scratch-wound closure clearly demonstrated that hERG1-expressing cells migrated more rapidly than vector-transfected control cells. In contrast to previous studies on hEAG1, there were no increases in rates of proliferation, or loss of growth factor dependency; however, hERG1-expressing cells were capable of substrate-independent growth. Allogeneic transplantation of hERG1-expressing cells into nude mice resulted in an increased incidence of tumors. In contrast to hEAG1, the mechanism of cellular transformation is dependent on ion conduction. Trafficking-deficient and conduction-deficient hERG1 mutants also prevented cellular transformation. These results provide evidence that hERG1 expression is sufficient to induce cellular transformation by a mechanism distinct from hEAG1. The most important conclusion of this study is that selective hERG1 channel blockers have therapeutic potential in the treatment of hERG1-expressing cancers.


Asunto(s)
Transformación Celular Neoplásica/efectos de los fármacos , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Actinas/metabolismo , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Fibroblastos/efectos de los fármacos , Adhesiones Focales/metabolismo , Humanos , Ratones , Ratones Desnudos , Células 3T3 NIH , Fibras de Estrés/metabolismo , Transfección
8.
J Biol Chem ; 286(8): 6184-91, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21135103

RESUMEN

Human ether-à-go-go-related gene (hERG) K(+) channels have a critical role in cardiac repolarization. hERG channels close (deactivate) very slowly, and this is vital for regulating the time course and amplitude of repolarizing current during the cardiac action potential. Accelerated deactivation is one mechanism by which inherited mutations cause long QT syndrome and potentially lethal arrhythmias. hERG deactivation is highly dependent upon an intact EAG domain (the first 135 amino acids of the N terminus). Importantly, deletion of residues 2-26 accelerates deactivation to a similar extent as removing the entire EAG domain. These and other experiments suggest the first 26 residues (NT1-26) contain structural elements required to slow deactivation by stabilizing the open conformation of the pore. Residues 26-135 form a Per-Arnt-Sim domain, but a structure for NT1-26 has not been forthcoming, and little is known about its site of interaction on the channel. In this study, we present an NMR structure for the entire EAG domain, which reveals that NT1-26 is structurally independent from the Per-Arnt-Sim domain and contains a stable amphipathic helix with one face being positively charged. Mutagenesis and electrophysiological studies indicate that neutralizing basic residues and breaking the amphipathic helix dramatically accelerate deactivation. Furthermore, scanning mutagenesis and molecular modeling studies of the cyclic nucleotide binding domain suggest that negatively charged patches on its cytoplasmic surface form an interface with the NT1-26 domain. We propose a model in which NT1-26 obstructs gating motions of the cyclic nucleotide binding domain to allosterically stabilize the open conformation of the pore.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/química , Activación del Canal Iónico , Modelos Moleculares , Sustitución de Aminoácidos , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Mutagénesis , Mutación Missense , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína
10.
Biochemistry ; 47(28): 7414-22, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18558719

RESUMEN

Potassium (K (+)) channels can regulate ionic conduction through their pore by a mechanism, involving the selectivity filter, known as C-type inactivation. This process is rapid in the hERG K (+) channel and is fundamental to its physiological role. Although mutations within hERG are known to remove this process, a structural basis for the inactivation mechanism has yet to be characterized. Using MD simulations based on homology modeling, we observe that the carbonyl of the filter aromatic, Phe627, forming the S 0 K (+) binding site, swiftly rotates away from the conduction axis in the wild-type channel. In contrast, in well-characterized non-inactivating mutant channels, this conformational change occurs less frequently. In the non-inactivating channels, interactions with a water molecule located behind the selectivity filter are critical to the enhanced stability of the conducting state. We observe comparable conformational changes in the acid sensitive TASK-1 channel and propose a common mechanism in these channels for regulating efflux of K (+) ions through the selectivity filter.


Asunto(s)
Concentración de Iones de Hidrógeno , Canales de Potasio/química , Canales de Potasio/fisiología , Secuencia de Aminoácidos , Simulación por Computador , Humanos , Membrana Dobles de Lípidos , Modelos Moleculares , Datos de Secuencia Molecular , Fosfatidilcolinas , Conformación Proteica
11.
Chem Res Toxicol ; 21(5): 1005-10, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18447395

RESUMEN

hERG potassium channels have a critical role in the normal electrical activity of the heart. The block of hERG channels can cause the drug-induced form of long QT syndrome, a cardiac disorder that carries an increased risk of cardiac arrhythmias and sudden death. hERG channels are extraordinarily sensitive to block by large numbers of structurally diverse drugs. In previous years, the risk of compounds causing this cardiotoxic side effect has been a common reason for the failure of compounds in preclinical safety trials. Pharmaceutical companies have successfully utilized and developed higher throughput techniques for the early detection of compounds that block hERG, and this has helped reduce the number of compounds that fail in the late stages of development. Nevertheless, this screening-based approach is expensive, consumes chemistry resources, and bypasses the problem rather than shedding light on it. Crystal structures of potassium channels have facilitated studies into the structural basis for the gating and block of hERG channels. Most drugs bind within the inner cavity, and the individual amino acids that form the drug binding site have been identified by site-directed mutagenesis approaches. Gating processes have an important influence on the drug-binding site. Recent advances in our understanding of channel activation and inactivation are providing insight into why hERG channels are more susceptible to block than other K (+) channels. Knowledge of the structure of the drug-binding site and precise nature of interactions with drug molecules should assist efforts to develop drugs without the propensity to cause cardiac arrhythmias.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/metabolismo , Cardiotoxinas/toxicidad , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/metabolismo , Sitios de Unión , Cardiotoxinas/química , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Humanos , Preparaciones Farmacéuticas/química , Conformación Proteica
12.
Nat Commun ; 9(1): 907, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29500353

RESUMEN

Despite being highly toxic, carbon monoxide (CO) is also an essential intracellular signalling molecule. The mechanisms of CO-dependent cell signalling are poorly defined, but are likely to involve interactions with heme proteins. One such role for CO is in ion channel regulation. Here, we examine the interaction of CO with KATP channels. We find that CO activates KATP channels and that heme binding to a CXXHX16H motif on the SUR2A receptor is required for the CO-dependent increase in channel activity. Spectroscopic and kinetic data were used to quantify the interaction of CO with the ferrous heme-SUR2A complex. The results are significant because they directly connect CO-dependent regulation to a heme-binding event on the channel. We use this information to present molecular-level insight into the dynamic processes that control the interactions of CO with a heme-regulated channel protein, and we present a structural framework for understanding the complex interplay between heme and CO in ion channel regulation.


Asunto(s)
Monóxido de Carbono/metabolismo , Canales Iónicos/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Células HEK293 , Hemo/metabolismo , Humanos , Activación del Canal Iónico , Canales KATP/metabolismo , Modelos Moleculares , Espectrometría Raman , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/metabolismo
13.
Nat Commun ; 9(1): 3354, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120224

RESUMEN

The originally published version of this article contained an error in the subheading 'Heme is required for CO-dependent channel activation', which was incorrectly given as 'Hame is required for CO-dependent channel activation'. This has now been corrected in both the PDF and HTML versions of the Article.

14.
Proteins ; 68(2): 568-80, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17444521

RESUMEN

Many commonly used, structurally diverse, drugs block the human ether-a-go-go-related gene (hERG) K(+) channel to cause acquired long QT syndrome, which can lead to sudden death via lethal cardiac arrhythmias. This undesirable side effect is a major hurdle in the development of safe drugs. To gain insight about the structure of hERG and the nature of drug block we have produced structural models of the channel pore domain, into each of which we have docked a set of 20 hERG blockers. In the absence of an experimentally determined three-dimensional structure of hERG, each of the models was validated against site-directed mutagenesis data. First, hERG models were produced of the open and closed channel states, based on homology with the prokaryotic K(+) channel crystal structures. The modeled complexes were in partial agreement with the mutagenesis data. To improve agreement with mutagenesis data, a KcsA-based model was refined by rotating the four copies of the S6 transmembrane helix half a residue position toward the C-terminus, so as to place all residues known to be involved in drug binding in positions lining the central cavity. This model produces complexes that are consistent with mutagenesis data for smaller, but not larger, ligands. Larger ligands could be accommodated following refinement of this model by enlarging the cavity using the inherent flexibility about the glycine hinge (Gly648) in S6, to produce results consistent with the experimental data for the majority of ligands tested.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/química , Bloqueadores de los Canales de Potasio/farmacología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Cristalografía por Rayos X , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/genética , Corazón/fisiología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Neuronas/fisiología , Bloqueadores de los Canales de Potasio/química , Conformación Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido
15.
Trends Pharmacol Sci ; 26(3): 119-24, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15749156

RESUMEN

Avoiding drug-induced cardiac arrhythmia is recognized as a major hurdle in the successful development of new drugs. The most common problem is acquired long QT syndrome caused by drugs that block human ether-a-go-go-related-gene (hERG) K(+) channels, delay cardiac repolarization and increase the risk of torsades de pointes arrhythmia (TdP). Not all hERG channel blockers induce TdP because they can also modulate other channels that counteract the hERG channel-mediated effect. However, hERG channel blockade is an important indicator of potential pro-arrhythmic liability. The molecular determinants of hERG channel blockade have been defined using a site-directed mutagenesis approach. Combined with pharmacophore models, knowledge of the drug-binding site of hERG channels will facilitate in silico design efforts to discover drugs that are devoid of this rare, but potentially lethal, side-effect.


Asunto(s)
Síndrome de QT Prolongado/metabolismo , Bloqueadores de los Canales de Potasio/metabolismo , Canales de Potasio/metabolismo , Animales , Canales de Potasio Éter-A-Go-Go , Humanos , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/genética , Bloqueadores de los Canales de Potasio/efectos adversos , Bloqueadores de los Canales de Potasio/farmacología , Valor Predictivo de las Pruebas
16.
J Am Heart Assoc ; 4(4)2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25911606

RESUMEN

BACKGROUND: Ivabradine is a specific bradycardic agent used in coronary artery disease and heart failure, lowering heart rate through inhibition of sinoatrial nodal HCN-channels. This study investigated the propensity of ivabradine to interact with KCNH2-encoded human Ether-à-go-go-Related Gene (hERG) potassium channels, which strongly influence ventricular repolarization and susceptibility to torsades de pointes arrhythmia. METHODS AND RESULTS: Patch clamp recordings of hERG current (IhERG) were made from hERG expressing cells at 37°C. Ih ERG was inhibited with an IC50 of 2.07 µmol/L for the hERG 1a isoform and 3.31 µmol/L for coexpressed hERG 1a/1b. The voltage and time-dependent characteristics of Ih ERG block were consistent with preferential gated-state-dependent channel block. Inhibition was partially attenuated by the N588K inactivation-mutant and the S624A pore-helix mutant and was strongly reduced by the Y652A and F656A S6 helix mutants. In docking simulations to a MthK-based homology model of hERG, the 2 aromatic rings of the drug could form multiple π-π interactions with the aromatic side chains of both Y652 and F656. In monophasic action potential (MAP) recordings from guinea-pig Langendorff-perfused hearts, ivabradine delayed ventricular repolarization and produced a steepening of the MAPD90 restitution curve. CONCLUSIONS: Ivabradine prolongs ventricular repolarization and alters electrical restitution properties at concentrations relevant to the upper therapeutic range. In absolute terms ivabradine does not discriminate between hERG and HCN channels: it inhibits Ih ERG with similar potency to that reported for native If and HCN channels, with S6 binding determinants resembling those observed for HCN4. These findings may have important implications both clinically and for future bradycardic drug design.


Asunto(s)
Benzazepinas/farmacología , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Animales , Bradicardia/tratamiento farmacológico , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/efectos de los fármacos , Cobayas , Células HEK293 , Corazón/efectos de los fármacos , Humanos , Ivabradina , Masculino , Técnicas de Placa-Clamp
17.
Curr Opin Drug Discov Devel ; 6(5): 667-74, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-14579516

RESUMEN

Human ether-a-go-go-related gene (HERG) subunits mediate a K+ current that is required for normal repolarization of the cardiac action potential. The unintentional inhibition of HERG currents by numerous medications results in prolongation of the QT interval, as measured on the electrocardiogram, and is associated with increased risk of patients suffering from life-threatening cardiac arrhythmias. QT interval prolongation is considered a major safety concern by worldwide drug regulatory bodies, and early detection of new compounds with this undesirable side effect has become an important objective for pharmaceutical companies. New studies are shedding light on the structural basis of drug binding and the gating-dependent repositioning of key residues in the inner cavity of HERG, which are responsible for the unusual sensitivity of HERG to pharmacological agents. Insights from these studies may help develop novel strategies to reduce the proarrhythmic potential of the next generation of drugs.


Asunto(s)
Antiarrítmicos/farmacología , Proteínas de Transporte de Catión , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio/química , Secuencia de Aminoácidos , Animales , Arritmias Cardíacas/inducido químicamente , Sitios de Unión , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Canales de Potasio Éter-A-Go-Go , Síndrome de QT Prolongado/inducido químicamente , Datos de Secuencia Molecular , Canales de Potasio con Entrada de Voltaje/química , Estructura Terciaria de Proteína , Alineación de Secuencia
18.
J Pharmacol Toxicol Methods ; 48(2): 65-80, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-14565563

RESUMEN

The majority of drugs associated with QT interval prolongation share an ability to inhibit ionic currents passed by HERG potassium channels. One method of screening new chemical entities (NCEs) for QT prolonging potential is therefore to use heterologous systems expressing HERG channels. Such systems are also of value in the understanding of the function, kinetics, sorting, pharmacological sensitivities, and important molecular determinants of the HERG potassium channel. The methods for incorporating the HERG potassium channel into cells and measuring the consequent current are a mixture of techniques that are standard (for heterologous expression of most ion channels) and individualised to HERG. This review presents a selection of the most commonly used methods for examining heterologous HERG currents, as well as introducing some of the technical problems that may be encountered and their solutions. In mammalian cell lines, problems such as fragile membranes, high leak currents, inability to form a gigaseal, diminished HERG current, endogenous transient outward current, altered kinetics, and even occasional run down can interfere with measurements. In Xenopus oocytes, endogenous chloride currents, insufficient superfusate flow, diminished HERG current and HERG current 'run up' may create difficulties.


Asunto(s)
Proteínas de Transporte de Catión , Síndrome de QT Prolongado/inducido químicamente , Oocitos/metabolismo , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/biosíntesis , Potenciales de Acción , Animales , Línea Celular , Evaluación Preclínica de Medicamentos/métodos , Canales de Potasio Éter-A-Go-Go , Síndrome de QT Prolongado/prevención & control , Oocitos/efectos de los fármacos , Técnicas de Placa-Clamp , Canales de Potasio/genética , Transcripción Genética , Xenopus
20.
J Med Chem ; 55(8): 4010-4, 2012 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-22455383

RESUMEN

Molecular knowledge of hERG blocking liability can offer the possibility of optimizing lead compounds in a way that eliminates potentially lethal side effects. In this study, we computationally designed, synthesized, and tested a small series of "minimally structured" molecules. Some of these compounds were remarkably potent against hERG (6, IC(50) = 2.4 nM), allowing us to identify the minimal structural requirements for hERG blocking liability.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/efectos de los fármacos , Bloqueadores de los Canales de Potasio/síntesis química , Diseño de Fármacos , Humanos , Síndrome de QT Prolongado/inducido químicamente , Bloqueadores de los Canales de Potasio/efectos adversos , Relación Estructura-Actividad Cuantitativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA