Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 850: 157976, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35964757

RESUMEN

A novel framework for the expedient assessment of flood risk to transportation networks focused on the response of the most critical and vulnerable infrastructure assets, the bridges, is developed, validated and applied. Building upon the recent French guidelines on scour risk (CEREMA, 2019), this paper delivers a thorough methodology, that incorporates three key, risk parameters: (i) the hydrodynamic loading, a hazard component of equal significance to scour, for the assessment of hazard; (ii) the correlation of select scour indicators with a new index relating to flow velocity, a primary measure of the adverse impacts of flow-structure interaction, enabling a more accurate and automated, assessment of bridge susceptibility to scour; (iii) the use of a new, comprehensive indicator, namely the Indicator of Flood Hazard Intensity (IFHI) which incorporates, in a simple yet efficient way, the key parameters controlling the severity of flood impact on bridges, namely flow velocity, floodwater height, flow obstruction, and sediment type. The framework is implemented for the analysis of flood risk in a case study area, considering an inventory of 117 bridges of diverse construction characteristics, which were affected by a major flood that impacted Greece in September 2020. The reliability of the method is validated against an extensive record of inspected and documented bridge damages. Regional scale analysis is facilitated by the adoption of the Multi-Criteria Decision-Making method for flood hazard indexing, considering geomorphological, meteorological, hydrological, and land use/cover data, based on the processing of remotely sensed imagery and openly available geospatial datasets in GIS.


Asunto(s)
Inundaciones , Sistemas de Información Geográfica , Hidrología , Reproducibilidad de los Resultados , Medición de Riesgo
2.
Sci Total Environ ; 746: 141001, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32795756

RESUMEN

Monitoring-enhanced resilience in transport management is emerging together with the new technologies and digital data, however have not been fully explored yet. Digital technologies have the potential to provide rapid resilience assessments in a quantifiable and engineered manner for transport infrastructure, which is exposed to multiple natural and human-induced hazards and diverse loads throughout their life-cycle. Physical damage and disruption of networks and interdependent systems may cause tremendous socioeconomic impact, affecting world economies and societies. Nowadays, transport infrastructure stakeholders have shifted the requirements in risk and resilience assessment. The expectation is that risk is estimated efficiently, almost in real-time with high accuracy, aiming at maximising the functionality and minimising losses. Nevertheless, no integrated framework exists for quantifying resilience to diverse hazards, based on structural and functionality monitoring (SHFM) data, and this is the main capability gap that this paper envisages filling. Monitoring systems have been used widely in transport infrastructure and have been studied extensively in the literature. Data can facilitate prognosis of the asset condition and the functionality of the network, informing computer-based asset and traffic models, which can assist in defining actionable performance indicators, for diagnosis and for defining risk and loss expediently and accurately. Evidence exists that SHFM is an enabler of resilience. However, strategies are absent in support of monitoring-based resilience assessment in transport infrastructure management. In response to the above challenge, this paper puts forward for the first time in the international literature, a roadmap for monitoring-based quantification of resilience for transport infrastructure, based on a comprehensive review of the current state-of-the-art. It is a holistic asset management roadmap, which identifies the interactions among the design, monitoring, risk assessment and quantification of resilience to multiple hazards. Monitoring is embraced as a vital component, providing expedient feedback for recovery measures, accelerating decision-making for adaptation of changing ecosystems and built environments, utilising emerging technologies, to continuously deliver safer and resilient transport infrastructure.

3.
Sci Total Environ ; 714: 136854, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32018987

RESUMEN

The exposure of critical infrastructure to natural and human-induced hazards has severe consequences on world economies and societies. Therefore, resilience assessment of infrastructure assets to extreme events and sequences of diverse hazards is of paramount importance for maintaining their functionality. Yet, the resilience assessment commonly assumes single hazards and ignores alternative approaches and decisions in the restoration strategy. It has now been established that infrastructure owners and operators consider different factors in their restoration strategies depending on the available resources and their priorities, the importance of the asset and the level of damage. Currently, no integrated framework that accounts for the nature and sequence of multiple hazards and their impacts, the different strategies of restoration, and hence the quantification of resilience in that respect exists and this is an acknowledged gap that needs urgently filling. This paper provides, for the first time in the literature, a classification of multiple hazard sequences considering their nature and impacts. Subsequently, a novel framework for the quantitative resilience assessment of critical infrastructure, subjected to multiple hazards is proposed, considering the vulnerability of the assets to hazard actions, and the rapidity of the damage recovery, including the temporal variability of the hazards. The study puts forward a well-informed asset resilience index, which accounts for the full, partial or no restoration of asset damage between the subsequent hazard occurrences. The proposed framework is then applied on a typical highway bridge, which is exposed to realistic multiple hazard scenarios, considering pragmatic restoration strategies. The case study concludes that there is a significant effect of the occurrence time of the second hazard on the resilience index and a considerable error when using simple superimposition of resilience indices from different hazards, even when they are independent in terms of occurrence. This potentially concerns all critical infrastructure assets and, hence, this paper provides useful insights for the resilience-based design and management of infrastructure throughout their lifetime, leading to cost savings and improved services. The paper concludes with a demonstration of the importance of the framework and how this can be utilised to estimate the resilience of networks to provide a quantification of the resilience at a regional and country scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA