Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemphyschem ; 11(2): 389-93, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20024976

RESUMEN

The effect of confinement and energy transfer on the dynamics of a molecular magnet, known as a model system to study quantum coherence, is investigated. For this purpose the well-known polyoxovanadate [V(15)As(6)O(42)(H(2)O)](6-) (V(15)) is incorporated into a protein (human serum albumin, HSA) cavity. Due to a huge overlap of the optical absorption spectrum of V(15) with the emission spectrum of a fluorescence center of HSA (containing a single tryptophan residue), energy transfer is induced and probed by steady-state and time-resolved fluorescence. The geometrical coordination and the distance of the confined V(15) to the tryptophan moiety of HSA are investigated at various temperatures. This effect is used as a local probe for the thermal denaturation of the protein at elevated temperatures.


Asunto(s)
Transferencia de Energía , Unión Proteica , Pliegue de Proteína , Albúmina Sérica/química , Temperatura , Sitios de Unión , Humanos , Magnetismo , Estructura Molecular , Conformación Proteica , Espectrometría de Fluorescencia , Termodinámica
2.
J Colloid Interface Sci ; 310(1): 229-39, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17346729

RESUMEN

The phase diagrams of the pseudo-quaternary systems poly(oxyethylene) (10) stearyl ether (Brij-76)/1-butanol/isooctane/water (with equal amounts of oil and water in the presence of two nonaqueous polar solvents (NPS), ethylene glycol (EG), and tetraethylene glycol (TEG)), have been constructed at 30 degrees C. Regular fish-tail diagrams were obtained up to psi (weight fraction of EG or TEG in the mixture of polar solvents) equal to 0.5, confirming the establishment of hydrophile-lipophile balance (HLB) of the systems. The maximum solubilization capacity passed through a minimum at psi=0.2. No HLB was obtained at higher psi. The usual fish-tail diagrams were also obtained in temperature-induced phase mapping at fixed W(1) (weight fraction of 1-butanol in total amphiphile). Solubilization capacity and HLB temperature (T(HLB)) decreased with increasing psi at a fixed W(1), the effect being more pronounced for TEG than EG. A correlation between HLB temperature (T(HLB)) and HLB number (N(HLB)) of mixed amphiphiles (Brij-76+Bu) in pseudo-quaternary systems (in the presence of water and partial substitution of water with both NPS) has been established. The novelty of the work with respect to possible applications has been discussed.

3.
J Colloid Interface Sci ; 295(1): 230-42, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16125183

RESUMEN

The conductivity of AOT/IPM/water reverse micellar systems as a function of temperature, has been found to be non-percolating at three different concentrations (100, 175 and 250 mM), while the addition of nonionic surfactants [polyoxyethylene(10) cetyl ether (Brij-56) and polyoxyethylene(20) cetyl ether (Brij-58)] to these systems exhibits temperature-induced percolation in conductance in non-percolating AOT/isopropyl myristate (IPM)/water system at constant compositions (i.e., at fixed total surfactant concentration, omega and X(nonionic)). The influence of total surfactant concentration (micellar concentration) on the temperature-induced percolation behaviors of these systems has been investigated. The effect of Brij-58 is more pronounced than that of Brij-56 in inducing percolation. The threshold percolation temperature, Tp has been determined for these systems in presence of additives of different molecular structures, physical parameters and/or interfacial properties. The additives have shown both assisting and resisting effects on the percolation threshold. The additives, bile salt (sodium cholate), urea, formamide, cholesteryl acetate, cholesteryl benzoate, toluene, a triblock copolymer [(EO)13(PO)30(EO)13, Pluronic, PL64], polybutadiene, sucrose esters (sucrose dodecanoates, L-1695 and sucrose monostearate S-1670), formamide distinctively fall in the former category, whereas sodium chloride, cholesteryl palmitate, crown ether, ethylene glycol constitute the latter for both systems. Sucrose dodecanoates (L-595) had almost marginal effect on the process. The observed behavior of these additives on the percolation phenomenon has been explained in terms of critical packing parameter and/or other factors, which influence the texture of the interface and solution properties of the mixed reverse micellar systems. The activation energy, Ep for the percolation process has been evaluated. Ep values for the AOT/Brij-56 systems have been found to be lower than those of AOT/Brij-58 systems. The concentration of additives influence the parameters Tp and Ep for both systems. A preliminary report for the first time on the percolation phenomenon in mixed reverse micelles in presence of additives has been suggested on the basis of these parameters (Tp and Ep).

4.
J Colloid Interface Sci ; 300(1): 361-7, 2006 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16643941

RESUMEN

The isothermal phase diagram of the quaternary system polyoxyethylene(10) stearyl ether (Brij-76)/1-butanol/isooctane/water has been constructed at 30 degrees C with equal amounts of oil and water. A regular fishtail diagram was obtained, confirming the establishment of hydrophile-lipophile balance (HLB) in the system. Mixing of formamide (FA) [or N,N-dimethyl formamide (DMF)] with water as a cosolvent altered the HLB and decreased the solubilization capacity of the quaternary system. No three-phase body appeared at high FA or DMF content. Similar observations were noted for temperature-induced phase diagrams. The effect of DMF was more pronounced than that of FA in reducing the maximum solubilization capacity. The results have been summarized on the basis of HLB and mutual solubility of the components.

5.
J Colloid Interface Sci ; 300(2): 755-64, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16677663

RESUMEN

Phase diagrams of pseudo-quaternary systems of cetyltrimethylammonium bromide (CTAB)/polyoxyethylene(20)cetyl ether (Brij-58)/water/1-butanol (or 1-pentanol)/n-heptane (or n-decane) at fixed omega (=[water]/[surfactant]) of 55.6 were constructed at different temperatures (293, 303, 313, and 323 K) and different mole fraction compositions of Brij-58 (X(Brij-58)=0, 0.5, and 1.0 in CTAB + Brij-58 mixture). Pure CTAB stabilized systems produced larger single-phase domains than pure Brij-58 stabilized systems. Increasing temperature increased the single-phase domain in the Brij-58 stabilized systems, whereas the domain decreased in the CTAB stabilized systems. For mixed surfactant systems (with X(Brij)=0.5) negligible influence of temperature in the studied range of 293 to 323 K on the phase behavior was observed. Interfacial compositions of the mixed microemulsion systems at different temperature and different compositions were evaluated by the dilution method. The n(a)(i) (number of moles of alcohol at the interface) and n(a)(o) (number of moles of alcohol in the oil phase) determined from dilution experiments were found to decrease and increase respectively for CTAB stabilized systems, whereas an opposite trend was witnessed for Brij-58 stabilized systems. The energetics of transfer of cosurfactants from oil to the interface were found to be exothermic and endothermic for CTAB and Brij-58 stabilized systems, respectively. At equimolar composition of CTAB and Brij-58, the phase diagrams were temperature insensitive, so that the enthalpy of the aforesaid transfer process was zero.

6.
J Colloid Interface Sci ; 291(2): 550-9, 2005 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16043189

RESUMEN

The phase behavior of Brij-56/1-butanol/n-heptane/water is investigated at 30 degrees C with alpha [weight fraction of oil in (oil+water)]=0.5, wherein a 2-->3-->2 phase transition occurs with increasing W1 (weight fraction of 1-butanol in total amphiphile) at low X (weight fraction of both the amphiphiles in the mixture) and a 2-->1-->2 phase transition occurs at higher X. Addition of an ionic surfactant, sodium dodecylbenzene sulfonate, destroys the three-phase body and decreases the solubilization capacity of the system at different delta (weight fraction of ionic surfactant in total surfactant). A three-phase body appears at alpha=0.25, but not at alpha=0.75 for the single system. No three-phase body appears with the mixed system at either alpha value. Increased temperature increases the solubilization capacity of the Brij-56 system; on the other hand, a negligible effect of temperature on the Brij-56/SDBS mixed system has been observed. Addition of salt (NaCl) produces a three-phase body for both single and mixed systems and increases their solubilization capacities. The monomeric solubility of 1-butanol in oil (S1) and at the interface (S1s) has been calculated using the equation hydrophile-lipophile balance plane for both singles- and mixed-surfactant systems. These parameters have been utilized to explain the increase in solubilization capacity of these systems in the presence of NaCl.

7.
J Colloid Interface Sci ; 283(2): 565-77, 2005 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-15721934

RESUMEN

Microemulsification of a vegetable oil (eucalyptus) with single and mixed surfactants (AOT and Brij-35), cosurfactant of different lipophilicities (isomers of butanol), and water were studied at different surfactant and cosurfactant mixing ratios. The phase diagrams of the quaternary systems were constructed using unfolded and folded tetrahedron, wherein the phase characteristics of different ternary systems can be underlined. The microemulsion zone was found to be dependent upon the mixing ratios of surfactant and cosurfactant; the largest microemulsion zone was formed with 1:1 (w/w) S:CS. The effects of temperature and additives (NaCl, urea, glucose, and bile salts of different concentrations) on the phase behavior were examined. The mixed microemulsion system showed temperature insensitivity, whereas the Brij-35 (single) stabilized system exhibited a smaller microemulsion zone at elevated temperature. NaCl and glucose increased the microemulsion zone up to a certain concentration, beyond which the microemulsion zones were decreased. These additives decreased the microemulsion zones as temperature was increased. The effect of urea on microemulsion zone was found to be insignificant even at the concentration 3.0 mol dm(-3). Little effect on microemulsion zone was shown by NaC (sodium cholate) at 0.25 and 0.5 mol dm(-3) at different temperatures. The conductance of the single (AOT) and mixed microemulsion system (AOT+Brij-35) depends upon the water content and mixing ratios of the surfactants, and a steep rise in conductance was observed at equal weight percentages of oil and water. Viscosities for both single (AOT) and mixed (AOT+Brij-35) surfactant systems passed through maxima at equal oil and water regions showing structural transition. The viscosities for microemulsion systems increased with increasing Brij-35 content in the AOT+Brij-35 blend. Conductances and viscosities of different monophasic compositions in the absence and presence of additives (NaCl and NaC) were measured at different temperatures. The activation energy of conduction (DeltaE(cond)( *)) and the activation enthalpy for viscous flow (DeltaH(vis)( *)) were evaluated. It was found that both DeltaE(cond)( *) and DeltaH(vis)( *) were a function of the nature of the dispersion medium. Considering the phase separation point of maximum solubility, the free energy of dissolution of water or oil (DeltaG(s)(0)) at the microdispersed state in amphiphile medium was estimated and found to be a function of surfactant composition.

8.
J Colloid Interface Sci ; 288(1): 261-79, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-15927587

RESUMEN

Solubilization of water in mixed reverse micellar systems with anionic surfactant (AOT) and nonionic surfactants (Brijs, Spans, Tweens, Igepal CO 520), cationic surfactant (DDAB)-nonionic surfactants (Brijs, Spans, Igepal CO 520), and nonionic (Igepal CO 520)-nonionics (Brijs, Spans) in oils of different chemical structures and physical properties (isopropyl myristate, isobutyl benzene, cyclohexane) has been studied at 303 K. The enhancement in water solubilization has been evidenced in these systems with some exceptions. The maximum water solubilization capacity (omega(0,max)) in mixed reverse micellar systems occurred at a certain mole fraction of a nonionic surfactant, which is indicated as X(nonionic,max). The addition of electrolyte (NaCl or NaBr) in these systems tends to enhance their solubilization capacities further both at a fixed composition of nonionic (X(nonionic); 0.1) and at X(nonionic,max) at 303 K. The maximum in solubilization capacity of electrolyte (omega(max)) was obtained at an optimal electrolyte concentration (designated as [NaCl](max) or [NaBr](max)). All these parameters, omega(0,max) vis-a-vis X(nonionic,max) and omega(max) vis-a-vis [NaCl](max), have been found to be dependent on the surfactant component (content, EO chains, and configuration of the polar head group, and the hydrocarbon moiety of the nonionic surfactants) and type of oils. The conductance behavior of these systems has also been investigated, focusing on the influences of water content (omega), content of nonionics (X(nonionic)), concentration of electrolyte ([NaCl] or [NaBr]), and oil. Percolation of conductance has been observed in some of these systems and explained by considering the influences of the variables on the rigidity of the oil/water interface and attractive interactions of the surfactant aggregates. Percolation zones have been depicted in the solubilization capacity vs X(nonionic) or [electrolyte] curves in order to correlate with maximum in water or electrolyte solubilization capacity. The overall results, obtained in these studies, have been interpreted in terms of the model proposed by Shah and co-workers for the solubility of water in water-in-oil microemulsions, as their model proposed that the two main effects that determine the solubility of these systems are curvature of the surfactant film separating the oil and water and interactions between water droplets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA