Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 287(40): 33545-53, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22773831

RESUMEN

Bone development is a dynamic process that requires cell motility and morphological adaptation under the control of actin cytoskeleton. This actin cytoskeleton system is regulated by critical modulators including actin-binding proteins. Among them, profilin1 (Pfn1) is a key player to control actin fiber structure, and it is involved in a number of cellular activities such as migration. During the early phase of body development, skeletal stem cells and osteoblastic progenitor cells migrate to form initial rudiments for future skeletons. During this migration, these cells extend their process based on actin cytoskeletal rearrangement to locate themselves in an appropriate location within microenvironment. However, the role of Pfn1 in regulation of mesenchymal progenitor cells (MPCs) during skeletal development is incompletely understood. Here we examined the role of Pfn1 in skeletal development using a genetic ablation of Pfn1 in MPCs by using Prx1-Cre recombinase. We found that Pfn1 deficiency in MPCs caused complete cleft sternum. Notably, Pfn1-deficient mice exhibited an absence of trabecular bone in the marrow space of appendicular long bone. This phenotype is location-specific, as Pfn1 deficiency did not largely affect osteoblasts in cortical bone. Pfn1 deficiency also suppressed longitudinal growth of long bone. In vitro, Pfn1 deficiency induced retardation of osteoblastic cell migration. These observations revealed that Pfn1 is a critical molecule for the skeletal development, and this could be at least in part associated with the retardation of cell migration.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Profilinas/fisiología , Alelos , Animales , Huesos/metabolismo , Cartílago/metabolismo , Movimiento Celular , Citoesqueleto/metabolismo , Genotipo , Células Madre Mesenquimatosas/citología , Ratones , Ratones Noqueados , Ratones Transgénicos , Células 3T3 NIH , Osteoblastos/citología , Osteogénesis , Profilinas/metabolismo , ARN Interferente Pequeño/metabolismo , Factores de Tiempo , Transfección , Microtomografía por Rayos X/métodos
2.
J Cell Physiol ; 226(12): 3087-93, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21732353

RESUMEN

Osteoporosis causes fractures that lead to reduction in the quality of life and it is one of the most prevalent diseases as it affects approximately 10% of the population. One of the important features of osteoporosis is osteopenia. However, its etiology is not fully elucidated. Dok-1 and Dok-2 are adaptor proteins acting downstream of protein tyrosine kinases that are mainly expressed in the cells of hematopoietic lineage. Although these proteins negatively regulate immune system, their roles in bone metabolism are not understood. Here, we analyzed the effects of Dok-1 and Dok-2 double-deficiency on bone. Dok-1/2 deficiency reduced the levels of trabecular and cortical bone mass compared to wildtype. In addition, Dok-1/2 deficiency increased periosteal perimeters and endosteal perimeters of the mid shaft of long bones. Histomorphometric analysis of the bone parameters indicated that Dok-1/2 deficiency did not significantly alter the levels of bone formation parameters including mineralizing surface/bone surface (MS/BS), mineral apposition rate (MAR) and bone formation rate (BFR). In contrast, Dok-1/2 deficiency enhanced the levels of bone resorption parameters including osteoclast number (N.Oc/BS) and osteoclast surface (Oc.S/BS). Analyses of individual osteoclastic activity indicated that Dok-1/2 deficiency enhanced pit formation. Systemically, Dok-1/2 deficiency increased the levels of urinary deoxypyridinoline (Dpyr). Search for the target point of the Dok-1/2 deficiency effects on osteoclasts identified that the mutation enhanced sensitivity of osteoclast precursors to macrophage colony-stimulating factor. These data revealed that Dok-1 and Dok-2 deficiency induces osteopenia by activation of osteoclasts.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Enfermedades Óseas Metabólicas/metabolismo , Proteínas de Unión al ADN/deficiencia , Fémur/metabolismo , Osteoclastos/metabolismo , Fosfoproteínas/deficiencia , Células Madre/metabolismo , Tibia/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Aminoácidos/orina , Animales , Biomarcadores/orina , Enfermedades Óseas Metabólicas/diagnóstico por imagen , Enfermedades Óseas Metabólicas/genética , Resorción Ósea/genética , Resorción Ósea/metabolismo , Diferenciación Celular , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Fémur/diagnóstico por imagen , Genotipo , Factor Estimulante de Colonias de Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteogénesis , Fenotipo , Fosfoproteínas/genética , Proteínas de Unión al ARN/genética , Tibia/diagnóstico por imagen , Microtomografía por Rayos X
3.
Bone ; 54(1): 172-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23314072

RESUMEN

Mechanical stress is known to alter bone mass and the loss of force stimuli leads to reduction of bone mass. However, molecules involved in this phenomenon are incompletely understood. As mechanical force would affect signaling events in cells, we focused on a calcium channel, TRPV4 regarding its role in the effects of force stimuli on calcium in osteoblasts. TRPV4 expression levels were enhanced upon differentiation of osteoblasts in culture. We found that BMP-2 treatment enhanced TRPV4 gene expression in a dose dependent manner. BMP-2 effects on TRPV4 expression were suppressed by inhibitors for transcription and new protein synthesis. In these osteoblasts, a TRPV4-selective agonist, 4α-PDD, enhanced calcium signaling and the effects of 4α-PDD were enhanced in differentiated osteoblasts compared to the control cells. Fluid flow, as a mechanical stimulation, induced intracellular calcium oscillation in wild type osteoblasts. In contrast, TRPV4 deficiency suppressed calcium oscillation significantly even when the cells were subjected to fluid flow. These data suggest that TRPV4 is involved in the flow-induced calcium signaling in osteoblasts.


Asunto(s)
Señalización del Calcio , Diferenciación Celular , Osteoblastos/citología , Osteoblastos/metabolismo , Estrés Mecánico , Canales Catiónicos TRPV/metabolismo , Animales , Proteína Morfogenética Ósea 2/farmacología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Medios de Cultivo/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Osteoblastos/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reología/efectos de los fármacos , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA