Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 128(12): 2351-62, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25964651

RESUMEN

In this study, we elucidated the architectures of two multisubunit complexes, the BBSome and exocyst, through a novel application of fluorescent fusion proteins. By processing lysates from cells co-expressing GFP and RFP fusion proteins for immunoprecipitation with anti-GFP nanobody, protein-protein interactions could be reproducibly visualized by directly observing the immunoprecipitates under a microscope, and evaluated using a microplate reader, without requiring immunoblotting. Using this 'visible' immunoprecipitation (VIP) assay, we mapped binary subunit interactions of the BBSome complex, and determined the hierarchies of up to four subunit interactions. We also demonstrated the assembly sequence of the BBSome around the centrosome, and showed that BBS18 (also known as BBIP1 and BBIP10) serves as a linker between BBS4 and BBS8 (also known as TTC8). We also applied the VIP assay to mapping subunit interactions of the exocyst tethering complex. By individually subtracting the eight exocyst subunits from multisubunit interaction assays, we unequivocally demonstrated one-to-many subunit interactions (Exo70 with Sec10+Sec15, and Exo84 with Sec10+Sec15+Exo70). The simple, versatile VIP assay described here will pave the way to understanding the architectures and functions of multisubunit complexes involved in a variety of cellular processes.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Western Blotting , Membrana Celular/metabolismo , Células Cultivadas , Proteínas del Citoesqueleto , Células HEK293 , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos , Unión Proteica , Mapas de Interacción de Proteínas , Subunidades de Proteína , Transporte de Proteínas , Anticuerpos de Dominio Único/metabolismo , Técnicas del Sistema de Dos Híbridos , Proteína Fluorescente Roja
2.
J Biol Chem ; 290(24): 15004-17, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-25947375

RESUMEN

We showed previously that ATP11A and ATP11C have flippase activity toward aminophospholipids (phosphatidylserine (PS) and phosphatidylethanolamine (PE)) and ATP8B1 and that ATP8B2 have flippase activity toward phosphatidylcholine (PC) (Takatsu, H., Tanaka, G., Segawa, K., Suzuki, J., Nagata, S., Nakayama, K., and Shin, H. W. (2014) J. Biol. Chem. 289, 33543-33556). Here, we show that the localization of class 5 P4-ATPases to the plasma membrane (ATP10A and ATP10D) and late endosomes (ATP10B) requires an interaction with CDC50A. Moreover, exogenous expression of ATP10A, but not its ATPase-deficient mutant ATP10A(E203Q), dramatically increased PC flipping but not flipping of PS or PE. Depletion of CDC50A caused ATP10A to be retained at the endoplasmic reticulum instead of being delivered to the plasma membrane and abrogated the increased PC flipping activity observed by expression of ATP10A. These results demonstrate that ATP10A is delivered to the plasma membrane via its interaction with CDC50A and, specifically, flips PC at the plasma membrane. Importantly, expression of ATP10A, but not ATP10A(E203Q), dramatically altered the cell shape and decreased cell size. In addition, expression of ATP10A, but not ATP10A(E203Q), delayed cell adhesion and cell spreading onto the extracellular matrix. These results suggest that enhanced PC flipping activity due to exogenous ATP10A expression alters the lipid composition at the plasma membrane, which may in turn cause a delay in cell spreading and a change in cell morphology.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Proteínas de Transporte de Membrana/fisiología , Fosfatidilcolinas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Transporte Biológico , Adhesión Celular/fisiología , Membrana Celular/fisiología , Movimiento Celular/fisiología , Cartilla de ADN , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Unión Proteica , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/enzimología
3.
J Lipid Res ; 56(11): 2151-7, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26420878

RESUMEN

Type IV P-type ATPases (P4-ATPases) translocate phospholipids from the exoplasmic to the cytoplasmic leaflets of cellular membranes. We and others previously showed that ATP11C, a member of the P4-ATPases, translocates phosphatidylserine (PS) at the plasma membrane. Twenty years ago, the UPS-1 (uptake of fluorescent PS analogs) cell line was isolated from mutagenized Chinese hamster ovary (CHO)-K1 cells with a defect in nonendocytic uptake of nitrobenzoxadiazole PS. Due to its defect in PS uptake, the UPS-1 cell line has been used in an assay for PS-flipping activity; however, the gene(s) responsible for the defect have not been identified to date. Here, we found that the mRNA level of ATP11C was dramatically reduced in UPS-1 cells relative to parental CHO-K1 cells. By contrast, the level of ATP11A, another PS-flipping P4-ATPase at the plasma membrane, or CDC50A, which is essential for delivery of most P4-ATPases to the plasma membrane, was not affected in UPS-1 cells. Importantly, we identified a nonsense mutation in the ATP11C gene in UPS-1 cells, indicating that the intact ATP11C protein is not expressed. Moreover, exogenous expression of ATP11C can restore PS uptake in UPS-1 cells. These results indicate that lack of the functional ATP11C protein is responsible for the defect in PS uptake in UPS-1 cells and ATP11C is crucial for PS flipping in CHO-K1 cells.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Proteínas de Transporte de Membrana/fisiología , Fosfatidilserinas/metabolismo , Animales , Células CHO , Membrana Celular/enzimología , Cricetinae , Cricetulus , Humanos
4.
FEBS Lett ; 590(14): 2138-45, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27277390

RESUMEN

We previously showed that P4-ATPases, ATP10A/ATP8B1, and ATP11A/ATP11C have flippase activities toward phosphatidylcholine (PC), and aminophospholipids [phosphatidylserine (PS) and phosphatidylethanolamine], respectively. Here, we investigate the effect of PC-specific flippases versus aminophospholipid-specific flippases in cell spreading on the extracellular matrix. Expression of PC-flippases, but not PS-flippases, delayed cell adhesion, cell spreading and inhibited formation of focal adhesions. In addition, overexpression of a PS-binding probe that sequesters PS in the cytoplasmic leaflet delayed cell spreading and inhibited formation of focal adhesions. These results suggest that elevation of PC at the cytoplasmic leaflet of the plasma membrane by expression of PC-flippases may reduce the local concentration of PS or phosphoinositides, required for efficient cell adhesion, focal adhesion formation, and cell spreading.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Adhesiones Focales/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fosfolípidos/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/genética , Adhesión Celular/fisiología , Adhesiones Focales/genética , Células HeLa , Humanos , Proteínas de Transporte de Membrana/genética , Fosfolípidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA