Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 37(7): e23001, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37249913

RESUMEN

Cardiac arrest (CA) and concomitant post-CA syndrome lead to a lethal condition characterized by systemic ischemia-reperfusion injury. Oxygen (O2 ) supply during cardiopulmonary resuscitation (CPR) is the key to success in resuscitation, but sustained hyperoxia can produce toxic effects post CA. However, only few studies have investigated the optimal duration and dosage of O2 administration. Herein, we aimed to determine whether high concentrations of O2 at resuscitation are beneficial or harmful. After rats were resuscitated from the 10-min asphyxia, mechanical ventilation was restarted at an FIO2 of 1.0 or 0.3. From 10 min after initiating CPR, FIO2 of both groups were maintained at 0.3. Bio-physiological parameters including O2 consumption (VO2 ) and mRNA gene expression in multiple organs were evaluated. The FIO2 0.3 group decreased VO2 , delayed the time required to achieve peak MAP, lowered ejection fraction (75.1 ± 3.3% and 59.0 ± 5.7% with FIO2 1.0 and 0.3, respectively; p < .05), and increased blood lactate levels (4.9 ± 0.2 mmol/L and 5.6 ± 0.2 mmol/L, respectively; p < .05) at 10 min after CPR. FIO2 0.3 group had significant increases in hypoxia-inducible factor, inflammatory, and apoptosis-related mRNA gene expression in the brain. Likewise, significant upregulations of hypoxia-inducible factor and apoptosis-related gene expression were observed in the FIO2 0.3 group in the heart and lungs. Insufficient O2 supplementation in the first 10 min of resuscitation could prolong ischemia, and may result in unfavorable biological responses 2 h after CA. Faster recovery from the impairment of O2 metabolism might contribute to the improvement of hemodynamics during the early post-resuscitation phase; therefore, it may be reasonable to provide the maximum feasible O2 concentrations during CPR.


Asunto(s)
Reanimación Cardiopulmonar , Paro Cardíaco , Ratas , Animales , Oxígeno , Paro Cardíaco/terapia , Hemodinámica , Hipoxia , Modelos Animales de Enfermedad
2.
Am J Emerg Med ; 78: 182-187, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38301368

RESUMEN

OBJECTIVE: Oxygen consumption (VO2), carbon dioxide generation (VCO2), and respiratory quotient (RQ), which is the ratio of VO2 to VCO2, are critical indicators of human metabolism. To seek a link between the patient's metabolism and pathophysiology of critical illness, we investigated the correlation of these values with mortality in critical care patients. METHODS: This was a prospective, observational study conducted at a suburban, quaternary care teaching hospital. Age 18 years or older healthy volunteers and patients who underwent mechanical ventilation were enrolled. A high-fidelity automation device, which accuracy is equivalent to the gold standard Douglas Bag technique, was used to measure VO2, VCO2, and RQ at a wide range of fraction of inspired oxygen (FIO2). RESULTS: We included a total of 21 subjects including 8 post-cardiothoracic surgery patients, 7 intensive care patients, 3 patients from the emergency room, and 3 healthy volunteers. This study included 10 critical care patients, whose metabolic measurements were performed in the ER and ICU, and 6 died. VO2, VCO2, and RQ of survivors were 282 +/- 95 mL/min, 202 +/- 81 mL/min, and 0.70 +/- 0.10, and those of non-survivors were 240 +/- 87 mL/min, 140 +/- 66 mL/min, and 0.57 +/- 0.08 (p = 0.34, p = 0.10, and p < 0.01), respectively. The difference of RQ was statistically significant (p < 0.01) and it remained significant when the subjects with FIO2 < 0.5 were excluded (p < 0.05). CONCLUSIONS: Low RQ correlated with high mortality, which may potentially indicate a decompensation of the oxygen metabolism in critically ill patients.


Asunto(s)
Pulmón , Respiración Artificial , Humanos , Adolescente , Estudios Prospectivos , Calorimetría Indirecta/métodos , Consumo de Oxígeno , Dióxido de Carbono/metabolismo , Enfermedad Crítica/terapia , Oxígeno
3.
BMC Med ; 21(1): 56, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36922820

RESUMEN

BACKGROUND: Mitochondrial transplantation (MTx) is an emerging but poorly understood technology with the potential to mitigate severe ischemia-reperfusion injuries after cardiac arrest (CA). To address critical gaps in the current knowledge, we test the hypothesis that MTx can improve outcomes after CA resuscitation. METHODS: This study consists of both in vitro and in vivo studies. We initially examined the migration of exogenous mitochondria into primary neural cell culture in vitro. Exogenous mitochondria extracted from the brain and muscle tissues of donor rats and endogenous mitochondria in the neural cells were separately labeled before co-culture. After a period of 24 h following co-culture, mitochondrial transfer was observed using microscopy. In vitro adenosine triphosphate (ATP) contents were assessed between freshly isolated and frozen-thawed mitochondria to compare their effects on survival. Our main study was an in vivo rat model of CA in which rats were subjected to 10 min of asphyxial CA followed by resuscitation. At the time of achieving successful resuscitation, rats were randomly assigned into one of three groups of intravenous injections: vehicle, frozen-thawed, or fresh viable mitochondria. During 72 h post-CA, the therapeutic efficacy of MTx was assessed by comparison of survival rates. The persistence of labeled donor mitochondria within critical organs of recipient animals 24 h post-CA was visualized via microscopy. RESULTS: The donated mitochondria were successfully taken up into cultured neural cells. Transferred exogenous mitochondria co-localized with endogenous mitochondria inside neural cells. ATP content in fresh mitochondria was approximately four times higher than in frozen-thawed mitochondria. In the in vivo survival study, freshly isolated functional mitochondria, but not frozen-thawed mitochondria, significantly increased 72-h survival from 55 to 91% (P = 0.048 vs. vehicle). The beneficial effects on survival were associated with improvements in rapid recovery of arterial lactate and glucose levels, cerebral microcirculation, lung edema, and neurological function. Labeled mitochondria were observed inside the vital organs of the surviving rats 24 h post-CA. CONCLUSIONS: MTx performed immediately after resuscitation improved survival and neurological recovery in post-CA rats. These results provide a foundation for future studies to promote the development of MTx as a novel therapeutic strategy to save lives currently lost after CA.


Asunto(s)
Reanimación Cardiopulmonar , Paro Cardíaco , Ratas , Animales , Reanimación Cardiopulmonar/métodos , Paro Cardíaco/terapia , Mitocondrias , Encéfalo/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Adenosina Trifosfato/uso terapéutico , Modelos Animales de Enfermedad
4.
Ann Neurol ; 91(3): 389-403, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34979595

RESUMEN

OBJECTIVE: Cardiac arrest (CA) is a major health burden with brain damage being a significant contributor to mortality. We found lysophosphatidylcholine (LPC), including a species containing docosahexaenoic acid (LPC-DHA), was significantly decreased in plasma post-CA, supplementation of which significantly improved neurological outcomes. The aim of this study is to understand the protective role of LPC-DHA supplementation on the brain post-CA. METHODS: We first evaluated associations between the plasma level of LPC-DHA and neurological injury and outcomes of human patients with CA. We then utilized a rat CA model and cell cultures to investigate therapeutic and mechanistic aspects of plasma LPC-DHA supplementation. RESULTS: We found that decreased plasma LPC-DHA was strongly associated with neurological outcomes and disappearance of the difference between gray and white matter in the brain after CA in human patients. In rats, the decreased plasma LPC-DHA was associated with decreased levels of brain LPC-DHA after CA, and supplementing plasma LPC-DHA normalized brain levels of LPC-DHA and alleviated neuronal cell death, activation of astrocytes, and expression of various inflammatory and mitochondrial dynamics genes. We also observed deceased severity of metabolic alterations with LPC-DHA supplementation using untargeted metabolomics analysis. Furthermore, LPC treatment showed a similar protective effect for neurons and astrocytes in mixed primary brain cell cultures. INTERPRETATION: The observed neuroprotection accompanied with normalized brain LPC-DHA level by plasma supplementation implicate the importance of preventing the decrease of brain LPC-DHA post-CA for attenuating brain injury. Furthermore, the data supports the causative role of decreased plasma LPC-DHA for brain damage after CA. ANN NEUROL 2022;91:389-403.


Asunto(s)
Astrocitos/efectos de los fármacos , Lesiones Encefálicas/tratamiento farmacológico , Muerte Celular/efectos de los fármacos , Paro Cardíaco/complicaciones , Lisofosfatidilcolinas/administración & dosificación , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Animales , Encéfalo/efectos de los fármacos , Lesiones Encefálicas/sangre , Lesiones Encefálicas/etiología , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/administración & dosificación , Ácidos Docosahexaenoicos/sangre , Ácidos Docosahexaenoicos/uso terapéutico , Humanos , Lisofosfatidilcolinas/sangre , Lisofosfatidilcolinas/uso terapéutico , Masculino , Fármacos Neuroprotectores/uso terapéutico , Ratas , Ratas Sprague-Dawley
5.
FASEB J ; 36(5): e22307, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35394702

RESUMEN

Cardiac arrest (CA) produces global ischemia/reperfusion injury resulting in substantial multiorgan damage. There are limited efficacious therapies to save lives despite CA being such a lethal disease process. The small population of surviving patients suffer extensive brain damage that results in substantial morbidity. Mitochondrial dysfunction in most organs after CA has been implicated as a major source of injury. Metformin, a first-line treatment for diabetes, has shown promising results in the treatment for other diseases and is known to interact with the mitochondria. For the treatment of CA, prior studies have utilized metformin in a preconditioning manner such that animals are given metformin well before undergoing CA. As the timing of CA is quite difficult to predict, the present study, in a clinically relevant manner, sought to evaluate the therapeutic benefits of metformin administration immediately after resuscitation using a 10 min asphxyial-CA rat model. This is the first study to show that metformin treatment post-CA (a) improves 72 h survival and neurologic function, (b) protects mitochondrial function with a reduction in apoptotic brain injury without activating AMPK, and (c) potentiates earlier normalization of brain electrophysiologic activity. Overall, as an effective and safe drug, metformin has the potential to be an easily translatable intervention for improving survival and preventing brain damage after CA.


Asunto(s)
Lesiones Encefálicas , Paro Cardíaco , Metformina , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Paro Cardíaco/tratamiento farmacológico , Humanos , Metformina/farmacología , Metformina/uso terapéutico , Mitocondrias , Neuroprotección , Ratas
6.
BMC Pulm Med ; 23(1): 390, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37840131

RESUMEN

OBJECTIVE: Using a system, which accuracy is equivalent to the gold standard Douglas Bag (DB) technique for measuring oxygen consumption (VO2), carbon dioxide generation (VCO2), and respiratory quotient (RQ), we aimed to continuously measure these metabolic indicators and compare the values between post-cardiothoracic surgery and critical care patients. METHODS: This was a prospective, observational study conducted at a suburban, quaternary care teaching hospital. Age 18 years or older patients who underwent mechanical ventilation were enrolled. RESULTS: We included 4 post-surgery and 6 critical care patients. Of those, 3 critical care patients died. The longest measurement reached to 12 h and 15 min and 50 cycles of repeat measurements were performed. VO2 of the post-surgery patients were 234 ± 14, 262 ± 27, 212 ± 16, and 192 ± 20 mL/min, and those of critical care patients were 122 ± 20, 189 ± 9, 191 ± 7, 191 ± 24, 212 ± 12, and 135 ± 21 mL/min, respectively. The value of VO2 was more variable in the post-surgery patients and the range of each patient was 44, 126, 71, and 67, respectively. SOFA scores were higher in non-survivors and there were negative correlations of RQ with SOFA. CONCLUSIONS: We developed an accurate system that enables continuous and repeat measurements of VO2, VCO2, and RQ. Critical care patients may have less activity in metabolism represented by less variable values of VO2 and VCO2 over time as compared to those of post-cardiothoracic surgery patients. Additionally, an alteration of these values may mean a systemic distinction of the metabolism of critically ill patients.


Asunto(s)
Cuidados Críticos , Consumo de Oxígeno , Humanos , Adolescente , Estudios Prospectivos , Calorimetría Indirecta/métodos , Respiración Artificial , Dióxido de Carbono/metabolismo
7.
Adv Exp Med Biol ; 1395: 127-131, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36527626

RESUMEN

Surgical treatment should be considered for patients with severe vertebrobasilar artery (VBA) stenosis or progressive symptoms, but there is currently no clear treatment algorithm. We report a case of symptomatic intracranial vertebral artery stenosis with repeated cerebral infarction treated by percutaneous transluminal angioplasty (PTA) and stenting and monitoring of oxygen saturation by a brain oximeter. The patient was a 76-year-old man referred to our hospital due to infarction in the right cerebellum. Angiography showed 60% stenosis in the right vertebral artery and 90% stenosis in the left vertebral artery with progressive stenosis in the left. The patient was treated with intravenous and oral triple antiplatelet therapy but had dizziness again with new cerebral infarctions in the left cerebellum and right pontine. We shaved the patient's hair up to the superior nuchal line and placed left and right oximeter probes on each cerebellar hemisphere (2 cm lateral and 2 cm caudal from the external occipital protuberance). Under evaluation of blood flow in the posterior circulation with INVOS Cerebral/Somatic Oximeter, PTA and stent placement were performed for left vertebral artery stenosis. Postoperatively, the dizziness disappeared, and the patient was discharged on his own with good outcome. He has not had a recurrent stroke in over 6 years. Although medical treatment is generally considered the first choice for VBA stenosis, recurrent cerebral infarction occurs at a high rate in symptomatic lesions, and the prognosis is poor. In addition, the perioperative complication rate is not low, and there is no established method for evaluating perfusion of posterior circulation. The brain oximeter is already known to be useful in carotid artery (CA) revascularisation. In this report, we were able to perform a minimally invasive evaluation of blood flow in the posterior circulation using the brain oximeter which might be useful for surgical revascularisation not only in CA but also in VBA.


Asunto(s)
Mareo , Insuficiencia Vertebrobasilar , Masculino , Humanos , Anciano , Constricción Patológica , Insuficiencia Vertebrobasilar/terapia , Insuficiencia Vertebrobasilar/cirugía , Angioplastia , Stents , Oximetría , Encéfalo , Infarto Cerebral
8.
Am J Transplant ; 21(7): 2522-2531, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33443778

RESUMEN

We compared the outcome of COVID-19 in immunosuppressed solid organ transplant (SOT) patients to a transplant naïve population. In total, 10 356 adult hospital admissions for COVID-19 from March 1, 2020 to April 27, 2020 were analyzed. Data were collected on demographics, baseline clinical conditions, medications, immunosuppression, and COVID-19 course. Primary outcome was combined death or mechanical ventilation. We assessed the association between primary outcome and prognostic variables using bivariate and multivariate regression models. We also compared the primary endpoint in SOT patients to an age, gender, and comorbidity-matched control group. Bivariate analysis found transplant status, age, gender, race/ethnicity, body mass index, diabetes, hypertension, cardiovascular disease, COPD, and GFR <60 mL/min/1.73 m2 to be significant predictors of combined death or mechanical ventilation. After multivariate logistic regression analysis, SOT status had a trend toward significance (odds ratio [OR] 1.29; 95% CI 0.99-1.69, p = .06). Compared to an age, gender, and comorbidity-matched control group, SOT patients had a higher combined risk of death or mechanical ventilation (OR 1.34; 95% CI 1.03-1.74, p = .027).


Asunto(s)
COVID-19 , Trasplante de Órganos , Adulto , Humanos , Terapia de Inmunosupresión , SARS-CoV-2 , Receptores de Trasplantes
9.
J Transl Med ; 19(1): 462, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34781966

RESUMEN

BACKGROUND: Despite the benefits of extracorporeal cardiopulmonary resuscitation (ECPR) in cohorts of selected patients with cardiac arrest (CA), extracorporeal membrane oxygenation (ECMO) includes an artificial oxygenation membrane and circuits that contact the circulating blood and induce excessive oxidative stress and inflammatory responses, resulting in coagulopathy and endothelial cell damage. There is currently no pharmacological treatment that has been proven to improve outcomes after CA/ECPR. We aimed to test the hypothesis that administration of hydrogen gas (H2) combined with ECPR could improve outcomes after CA/ECPR in rats. METHODS: Rats were subjected to 20 min of asphyxial CA and were resuscitated by ECPR. Mechanical ventilation (MV) was initiated at the beginning of ECPR. Animals were randomly assigned to the placebo or H2 gas treatment groups. The supplement gas was administered with O2 through the ECMO membrane and MV. Survival time, electroencephalography (EEG), brain functional status, and brain tissue oxygenation were measured. Changes in the plasma levels of syndecan-1 (a marker of endothelial damage), multiple cytokines, chemokines, and metabolites were also evaluated. RESULTS: The survival rate at 4 h was 77.8% (7 out of 9) in the H2 group and 22.2% (2 out of 9) in the placebo group. The Kaplan-Meier analysis showed that H2 significantly improved the 4 h-survival endpoint (log-rank P = 0.025 vs. placebo). All animals treated with H2 regained EEG activity, whereas no recovery was observed in animals treated with placebo. H2 therapy markedly improved intra-resuscitation brain tissue oxygenation and prevented an increase in central venous pressure after ECPR. H2 attenuated an increase in syndecan-1 levels and enhanced an increase in interleukin-10, vascular endothelial growth factor, and leptin levels after ECPR. Metabolomics analysis identified significant changes at 2 h after CA/ECPR between the two groups, particularly in D-glutamine and D-glutamate metabolism. CONCLUSIONS: H2 therapy improved mortality in highly lethal CA rats rescued by ECPR and helped recover brain electrical activity. The underlying mechanism might be linked to protective effects against endothelial damage. Further studies are warranted to elucidate the mechanisms responsible for the beneficial effects of H2 on ischemia-reperfusion injury in critically ill patients who require ECMO support.


Asunto(s)
Reanimación Cardiopulmonar , Oxigenación por Membrana Extracorpórea , Paro Cardíaco , Animales , Paro Cardíaco/complicaciones , Paro Cardíaco/terapia , Humanos , Hidrógeno , Ratas , Factor A de Crecimiento Endotelial Vascular
10.
J Transl Med ; 19(1): 214, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001191

RESUMEN

BACKGROUND: Mitochondria are essential organelles that provide energy for cellular functions, participate in cellular signaling and growth, and facilitate cell death. Based on their multifactorial roles, mitochondria are also critical in the progression of critical illnesses. Transplantation of mitochondria has been reported as a potential promising approach to treat critical illnesses, particularly ischemia reperfusion injury (IRI). However, a systematic review of the relevant literature has not been conducted to date. Here, we systematically reviewed the animal and human studies relevant to IRI to summarize the evidence for mitochondrial transplantation. METHODS: We searched MEDLINE, the Cochrane library, and Embase and performed a systematic review of mitochondrial transplantation for IRI in both preclinical and clinical studies. We developed a search strategy using a combination of keywords and Medical Subject Heading/Emtree terms. Studies including cell-mediated transfer of mitochondria as a transfer method were excluded. Data were extracted to a tailored template, and data synthesis was descriptive because the data were not suitable for meta-analysis. RESULTS: Overall, we identified 20 animal studies and two human studies. Among animal studies, 14 (70%) studies focused on either brain or heart IRI. Both autograft and allograft mitochondrial transplantation were used in 17 (85%) animal studies. The designs of the animal studies were heterogeneous in terms of the route of administration, timing of transplantation, and dosage used. Twelve (60%) studies were performed in a blinded manner. All animal studies reported that mitochondrial transplantation markedly mitigated IRI in the target tissues, but there was variation in biological biomarkers and pathological changes. The human studies were conducted with a single-arm, unblinded design, in which autologous mitochondrial transplantation was applied to pediatric patients who required extracorporeal membrane oxygenation (ECMO) for IRI-associated myocardial dysfunction after cardiac surgery. CONCLUSION: The evidence gathered from our systematic review supports the potential beneficial effects of mitochondrial transplantation after IRI, but its clinical translation remains limited. Further investigations are thus required to explore the mechanisms of action and patient outcomes in critical settings after mitochondrial transplantation. Systematic review registration The study was registered at UMIN under the registration number UMIN000043347.


Asunto(s)
Daño por Reperfusión , Animales , Muerte Celular , Niño , Humanos , Mitocondrias , Daño por Reperfusión/terapia
11.
BMC Cardiovasc Disord ; 20(1): 23, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31948395

RESUMEN

Extracorporeal cardiopulmonary resuscitation (ECPR) can be associated with increased survival and neurologic benefits in selected patients with out-of-hospital cardiac arrest (OHCA). However, there remains insufficient evidence to recommend the routine use of ECPR for patients with OHCA. A novel integrated trauma workflow concept that utilizes a sliding computed tomography (CT) scanner and interventional radiology (IR) system, named a hybrid emergency room system (HERS), allowing emergency therapeutic interventions and CT examination without relocating trauma patients, has recently evolved in Japan. HERS can drastically shorten the ECPR implementation time and more quickly facilitate definitive interventions than the conventional advanced cardiovascular life support workflow. Herein, we discuss our novel workflow concept using HERS on ECPR for patients with OHCA.


Asunto(s)
Reanimación Cardiopulmonar , Prestación Integrada de Atención de Salud/organización & administración , Servicio de Urgencia en Hospital/organización & administración , Circulación Extracorporea , Modelos Organizacionales , Paro Cardíaco Extrahospitalario/terapia , Radiografía Intervencional , Tomografía Computarizada por Rayos X , Imagen de Cuerpo Entero , Reanimación Cardiopulmonar/instrumentación , Vías Clínicas/organización & administración , Circulación Extracorporea/instrumentación , Humanos , Paro Cardíaco Extrahospitalario/diagnóstico por imagen , Paro Cardíaco Extrahospitalario/fisiopatología , Grupo de Atención al Paciente/organización & administración , Desarrollo de Programa , Radiografía Intervencional/instrumentación , Factores de Tiempo , Tiempo de Tratamiento/organización & administración , Tomografía Computarizada por Rayos X/instrumentación , Imagen de Cuerpo Entero/instrumentación , Flujo de Trabajo
13.
Sci Rep ; 13(1): 3419, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854715

RESUMEN

Cardiac arrest (CA) patients suffer from systemic ischemia-reperfusion (IR) injury leading to multiple organ failure; however, few studies have focused on tissue-specific pathophysiological responses to IR-induced oxidative stress. Herein, we investigated biological and physiological parameters of the brain and heart, and we particularly focused on the lung dysfunction that has not been well studied to date. We aimed to understand tissue-specific susceptibility to oxidative stress and tested how oxygen concentrations in the post-resuscitation setting would affect outcomes. Rats were resuscitated from 10 min of asphyxia CA. Mechanical ventilation was initiated at the beginning of cardiopulmonary resuscitation. We examined animals with or without CA, and those were further divided into the animals exposed to 100% oxygen (CA_Hypero) or those with 30% oxygen (CA_Normo) for 2 h after resuscitation. Biological and physiological parameters of the brain, heart, and lungs were assessed. The brain and lung functions were decreased after CA and resuscitation indicated by worse modified neurological score as compared to baseline (222 ± 33 vs. 500 ± 0, P < 0.05), and decreased PaO2 (20 min after resuscitation: 113 ± 9 vs. baseline: 128 ± 9 mmHg, P < 0.05) and increased airway pressure (2 h: 10.3 ± 0.3 vs. baseline: 8.1 ± 0.2 mmHg, P < 0.001), whereas the heart function measured by echocardiography did not show significant differences compared before and after CA (ejection fraction, 24 h: 77.9 ± 3.3% vs. baseline: 82.2 ± 1.9%, P = 0.2886; fractional shortening, 24 h: 42.9 ± 3.1% vs. baseline: 45.7 ± 1.9%, P = 0.4658). Likewise, increases of superoxide production in the brain and lungs were remarkable, while those in the heart were moderate. mRNA gene expression analysis revealed that CA_Hypero group had increases in Il1b as compared to CA_Normo group significantly in the brain (P < 0.01) and lungs (P < 0.001) but not the heart (P = 0.4848). Similarly, hyperoxia-induced increases in other inflammatory and apoptotic mRNA gene expression were observed in the brain, whereas no differences were found in the heart. Upon systemic IR injury initiated by asphyxia CA, hyperoxia-induced injury exacerbated inflammation/apoptosis signals in the brain and lungs but might not affect the heart. Hyperoxia following asphyxia CA is more damaging to the brain and lungs but not the heart.


Asunto(s)
Paro Cardíaco , Hiperoxia , Daño por Reperfusión , Animales , Ratas , Asfixia , Encéfalo/patología , Reanimación Cardiopulmonar , Paro Cardíaco/complicaciones , Hiperoxia/complicaciones , Isquemia , Pulmón , Oxígeno , Reperfusión , Daño por Reperfusión/complicaciones , Daño por Reperfusión/patología , Modelos Animales de Enfermedad
14.
Surg Neurol Int ; 14: 32, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895211

RESUMEN

Background: Presurgical three-dimensional (3D) reconstructions allow spatial localization of cerebral lesions and their relationship with adjacent anatomical structures for optimal surgical resolution. The purpose of the present article is to present a method of virtual preoperative planning aiming to enhance 3D comprehension of neurosurgical pathologies using free DICOM image viewers. Case Description: We describe the virtual presurgical planning of a 61-year-old female presenting a cerebral tumor. 3D reconstructions were created with the "Horos®" Digital Imaging and Communications in Medicine viewer, utilizing images obtained from contrast-enhanced brain magnetic resonance imaging and computed tomography. The tumor and adjacent relevant structures were identified and delimited. A sequential virtual simulation of the surgical stages for the approach was performed with the identification of local gyral and vascular patterns of the cerebral surface for posterior intraoperative recognition. Through virtual simulation, an optimal approach was gained. Accurate localization and complete removal of the lesion were achieved during the surgical procedure. Virtual presurgical planning with open-source software can be utilized for supratentorial pathologies in both urgent and elective cases. Virtual recognition of vascular and cerebral gyral patterns is helpful reference points for intraoperative localization of lesions lacking cortical expression, allowing less invasive corticotomies. Conclusion: Digital manipulation of cerebral structures can increase anatomical comprehension of neurosurgical lesions to be treated. 3D interpretation of neurosurgical pathologies and adjacent anatomical structures is essential for developing an effective and safe surgical approach. The described technique is a feasible and accessible option for presurgical planning.

15.
Cells ; 12(11)2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37296668

RESUMEN

BACKGROUND: Cardiac arrest (CA) can lead to neuronal degeneration and death through various pathways, including oxidative, inflammatory, and metabolic stress. However, current neuroprotective drug therapies will typically target only one of these pathways, and most single drug attempts to correct the multiple dysregulated metabolic pathways elicited following cardiac arrest have failed to demonstrate clear benefit. Many scientists have opined on the need for novel, multidimensional approaches to the multiple metabolic disturbances after cardiac arrest. In the current study, we have developed a therapeutic cocktail that includes ten drugs capable of targeting multiple pathways of ischemia-reperfusion injury after CA. We then evaluated its effectiveness in improving neurologically favorable survival through a randomized, blind, and placebo-controlled study in rats subjected to 12 min of asphyxial CA, a severe injury model. RESULTS: 14 rats were given the cocktail and 14 received the vehicle after resuscitation. At 72 h post-resuscitation, the survival rate was 78.6% among cocktail-treated rats, which was significantly higher than the 28.6% survival rate among vehicle-treated rats (log-rank test; p = 0.006). Moreover, in cocktail-treated rats, neurological deficit scores were also improved. These survival and neurological function data suggest that our multi-drug cocktail may be a potential post-CA therapy that deserves clinical translation. CONCLUSIONS: Our findings demonstrate that, with its ability to target multiple damaging pathways, a multi-drug therapeutic cocktail offers promise both as a conceptual advance and as a specific multi-drug formulation capable of combatting neuronal degeneration and death following cardiac arrest. Clinical implementation of this therapy may improve neurologically favorable survival rates and neurological deficits in patients suffering from cardiac arrest.


Asunto(s)
Reanimación Cardiopulmonar , Paro Cardíaco , Animales , Ratas , Reanimación Cardiopulmonar/métodos , Paro Cardíaco/complicaciones , Paro Cardíaco/terapia , Ratas Sprague-Dawley , Roedores
16.
Int J Angiol ; 32(2): 128-130, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37207015

RESUMEN

Organ transplantation can be associated with vascular torsions and angulations of both recipient and donor vessels. Such kinks and/or torsions of vessels can compromise the vascular integrity, obstruct inflow and/or outflow, and result in loss of the organ and/or body parts. On many occasions, mild angulations and torsions can be successfully addressed by repositioning the organ. In cases where the abnormal findings persist, maneuvers such as placing a fat pad to create a smoother curve, or even opening the peritoneum (in the case of kidney transplants) to allow for a better positioning of the organ, are associated with successful outcomes. When such torsions/angulations persist despite these approaches, further innovative tactics are required. In the current report, we propose a technique that involves longitudinally opening of a synthetic graft that is rigid enough to maintain its shape, such as a ringed polytetrafluoroethylene graft, and placing it as an external stent around the angulated/torsioned vessel. This maneuver will correct the underlying vascular compromise without having to perform any further invasive interventions, such as reimplanting the organ or resecting part of the involved vessel. Although primarily illustrated for application by describing an instance in which exostenting was applied during kidney transplantation, our approach could be applied to any vessel under many circumstances where angulations/twists are encountered. In this report, we describe the use of an external stent, also called exostenting, to correct a severe torsion/angulation of the external iliac artery in a kidney transplant recipient where all other measures were unsuccessful.

17.
Int J Angiol ; 32(4): 253-257, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37927842

RESUMEN

In this case report, we describe the clinical course of a complicated transplant renal artery (TRA) pseudoaneurysm, clinically featured by gross and massive hematuria one month after a kidney transplant was performed on a 50 year-old male patient. TRA pseudoaneurysm is a rare but potentially life-threatening complication that may result in bleeding, infection, graft dysfunction/loss, lower limb ischemia/loss, hemorrhagic shock, and death. TRA pseudoaneurysm treatment remains challenging as it needs to be tailored to the patient characteristics including hemodynamic stability, graft function, anatomy, presentation, and pseudoaneurysm features. This publication discusses the clinical scenario of massive gross hematuria that derived from a retroperitoneal hematoma which originated from an actively bleeding TRA pseudoaneurysm. This case highlights the combined approach of endovascular stent placement and subsequent transplant nephrectomy as a last resort in the management of intractable bleeding from a complicated TRA pseudoaneurysm. To the best of our knowledge, this is the first published case report of an actively bleeding TRA anastomotic pseudoaneurysm that caused a massive retroperitoneal bleed that in turn evacuated via the bladder after disrupting the ureter-to-bladder anastomosis. A temporizing hemostatic arterial stent placed percutaneously allowed for a safer and controlled emergency transplant nephrectomy.

18.
Int J Angiol ; 32(3): 188-192, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37576534

RESUMEN

In this case study, we describe a 25-year-old male who was admitted due to a severe traumatic brain injury, requiring invasive intracranial pressure monitoring. At 48 hours posttrauma, he developed intracranial hypertension refractory to medical treatment without tomographic changes in the brain. Subsequently, intra-abdominal hypertension and tomographic signs of abdominal surgical pathology were observed. An exploratory laparotomy was performed with an intraoperative diagnosis of acute mesenteric ischemia. After surgical intervention for the abdominal pathology, intracranial pressure was restored to physiological values with a favorable recovery of the patient. In this report, the relationship between intracranial pressure and intra-abdominal pressure is discussed, highlighting the delicate association between the brain, abdomen, and thorax. Measures should be taken to avoid increases in intra-abdominal pressure in neurocritical patients. When treating intracranial hypertension refractory to conventional measures, abdominal causes and multiple compartment syndrome must be considered. The cranial compartment has physiological interdependence with other body compartments, where one can be modified by variations from another, giving rise to the concept of multiple compartment syndrome. Understanding this relationship is fundamental for a comprehensive approach of the neurocritical patient. To the best of our knowledge, this is the first report of a comatose patient post-traumatic brain injury, who developed medically unresponsive intracranial hypertension secondary to acute mesenteric ischemia, in which surgical resolution of intra-abdominal pathology resulted in intracranial pressure normalization and restitutio ad integrum of neurological status.

19.
Int J Angiol ; 32(4): 262-268, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37927847

RESUMEN

This case study describes a 45-year-old Caucasian male with a past medical history of obesity, hypertension, and non-insulin-dependent diabetes mellitus, who in the setting of coronavirus disease 2019 (COVID-19) pneumonia, developed portal vein thrombosis (PVT) presenting as an acute abdomen after hospital discharge from a cholecystitis episode. PVT is a very infrequent thromboembolic condition, classically occurring in patients with systemic conditions such as cirrhosis, malignancy, pancreatitis, diverticulitis, autoimmunity, and thrombophilia. PVT can cause serious complications, such as intestinal infarction, or even death, if not promptly treated. Due to the limited number of reports in the literature describing PVT in the COVID-19 setting, its prevalence, natural history, mechanism, and precise clinical features remain unknown. Therefore, clinical suspicion should be high for PVT, in any COVID-19 patient who presents with abdominal pain or associated signs and symptoms. To the best of our knowledge, this is the first report of COVID-19-associated PVT causing extensive thrombosis in the portal vein and its right branch, occurring in the setting of early-stage cirrhosis after a preceding episode of cholecystitis.

20.
Am J Obstet Gynecol MFM ; 4(1): 100490, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34543753

RESUMEN

BACKGROUND: The COVID-19 pandemic placed obstetricians in a difficult position of continuing to perform elective cesarean delivery without the knowledge of the risk of the spread of nosocomial infection of the COVID-19 virus. OBJECTIVE: This study aimed to determine the nosocomial infection rate in women undergoing elective cesarean delivery at 2 academic institutions. STUDY DESIGN: This nonrandomized prospective cohort trial evaluated patients undergoing elective cesarean delivery during the reopening phase of the COVID-19 pandemic in the state of New York at 2 large volume labor and delivery units. Eligible patients with a negative preoperative reverse transcriptase-polymerase chain reaction test and immunoglobulin G antibody test for COVID-19 were retested 6 to 9 days after discharge. The primary objective was the COVID-19 test conversion rate defined as a positive polymerase chain reaction test for SARS-CoV-2 after discharge with a negative preoperative test. This was used as a proxy for the nosocomial infection rate. RESULTS: A total of 136 patients were screened for participation. Of these patients, 2 tested positive for COVID-19 on preoperative testing, and 25 declined to participate. Overall, 111 patients consented to participate, and 96 patients underwent both preoperative and postoperative testing. No patient with a negative polymerase chain reaction test preoperatively, had a positive polymerase chain reaction test for the COVID-19 virus postoperatively. CONCLUSION: With strict and methodical perioperative and postpartum protocols, we can limit nosocomial COVID-19 infection in women undergoing elective cesarean delivery.


Asunto(s)
COVID-19 , Infección Hospitalaria , Estudios de Cohortes , Infección Hospitalaria/epidemiología , Infección Hospitalaria/etiología , Femenino , Humanos , Pandemias , Embarazo , Estudios Prospectivos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA