Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Ann Bot ; 133(2): 287-304, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37832038

RESUMEN

BACKGROUND AND AIMS: HCO3- can be a major carbon resource for photosynthesis in underwater environments. Here we investigate the underlying mechanism of uptake and membrane transport of HCO3- in submerged leaves of Hygrophila difformis, a heterophyllous amphibious plant. To characterize these mechanisms, we evaluated the sensitivity of underwater photosynthesis to an external carbonic anhydrase (CA) inhibitor and an anion exchanger protein inhibitor, and we attempted to identify components of the mechanism of HCO3- utilization. METHODS: We evaluated the effects of the external CA inhibitor and anion exchanger protein inhibitor on the NaHCO3 response of photosynthetic O2 evolution in submerged leaves of H. difformis. Furthermore, we performed a comparative transcriptomic analysis between terrestrial and submerged leaves. KEY RESULTS: Photosynthesis in the submerged leaves was decreased by both the external CA inhibitor and anion exchanger protein inhibitor, but no additive effect was observed. Among upregulated genes in submerged leaves, two α-CAs, Hdα-CA1 and Hdα-CA2, and one ß-carbonic anhydrase, Hdß-CA1, were detected. Based on their putative amino acid sequences, the α-CAs are predicted to be localized in the apoplastic region. Recombinant Hdα-CA1 and Hdß-CA1 showed dominant CO2 hydration activity over HCO3- dehydration activity. CONCLUSIONS: We propose that the use of HCO3- for photosynthesis in submerged leaves of H. difformis is driven by the cooperation between an external CA, Hdα-CA1, and an unidentified HCO3- transporter.


Asunto(s)
Anhidrasas Carbónicas , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Fotosíntesis , Aniones/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Dióxido de Carbono/metabolismo
2.
Ann Bot ; 131(3): 423-436, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36579472

RESUMEN

BACKGROUND AND AIMS: Evergreen herbaceous species in the deciduous forest understorey maintain their photosystems in long-lived leaves under dynamic seasonal changes in light and temperature. However, in evergreen understorey herbs, it is unknown how photosynthetic electron transport acclimates to seasonal changes in forest understorey environments, and what photoprotection systems function in excess energy dissipation under high-light and low-temperature environments in winter. METHODS: Here, we used Asarum tamaense, an evergreen herbaceous species in the deciduous forest understorey with a single-flush and long-lived leaves, and measured photosynthetic CO2 assimilation and electron transport in leaves throughout the year. The contents of photosynthetic proteins, pigments and primary metabolites were determined from regularly collected leaves. KEY RESULTS: Both the rates of CO2 assimilation and electron transport under saturated light were kept low in summer, but increased in autumn and winter in A. tamaense leaves. Although the contents of photosynthetic proteins including Rubisco did not increase in autumn and winter, the proton motive force and ΔpH across the thylakoid membrane were high in summer and decreased from summer to winter to a great extent. These decreases alleviated the suppression by lumen acidification and increased the electron transport rate in winter. The content and composition of carotenoids changed seasonally, which may affect changes in non-photochemical quenching from summer to winter. Winter leaves accumulated proline and malate, which may support cold acclimation. CONCLUSIONS: In A. tamaense leaves, the increase in photosynthetic electron transport rates in winter was not due to an increase in photosynthetic enzyme contents, but due to the activation of photosynthetic enzymes and/or release of limitation of photosynthetic electron flow. These seasonal changes in the regulation of electron transport and also the changes in several photoprotection systems should support the acclimation of photosynthetic C gain under dynamic environmental changes throughout the year.


Asunto(s)
Asarum , Asarum/metabolismo , Estaciones del Año , Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Plantas/metabolismo
3.
J Plant Res ; 136(2): 201-210, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36536238

RESUMEN

Leaf nitrogen (N) level affects not only photosynthetic CO2 assimilation, but also two photosystems of the photosynthetic electron transport. The quantum yield of photosystem II [Y(II)] and the non-photochemical yield due to the donor side limitation of photosystem I [Y(ND)], which denotes the fraction of oxidized P700 (P700+) to total P700, oppositely change depending on leaf N level, and the negative correlation between these two parameters has been reported in leaves of plants cultivated at various N levels in growth chambers. Here, we aimed to clarify whether this correlation is maintained after short-term changes in leaf N level, and what parameters are the most responsive to the changes in leaf N level under field conditions. We cultivated rice varieties at two N fertilization levels in paddy fields, treated additional N fertilization to plants grown at low N, and measured parameters of two photosystems of mature leaves. In rice leaves under low N condition, the Y(ND) increased and the photosynthetic linear electron flow was suppressed. In this situation, the accumulation of P700+ can function as excess energy dissipation. After the N addition, both Y(ND) and Y(II) changed, and the negative correlation between them was maintained. We used a newly-developed device to assess the photosystems. This device detected the similar changes in Y(ND) after the N addition, and the negative correlation between Y(ND) and photosynthetic O2 evolution rates was observed in plants under various N conditions. This study has provided strong field evidence that the Y(ND) largely changes depending on leaf N level, and that the Y(II) and Y(ND) are negatively correlated with each other irrespective of leaf N level, varieties and annual variation. The Y(ND) can stably monitor the leaf N status and the linear electron flow under field conditions.


Asunto(s)
Oryza , Oryza/metabolismo , Fotosíntesis , Transporte de Electrón , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Hojas de la Planta/metabolismo
4.
Ann Bot ; 130(3): 265-283, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-35947983

RESUMEN

BACKGROUND: Plants invest photosynthates in construction and maintenance of their structures and functions. Such investments are considered costs. These costs are recovered by the CO2 assimilation rate (A) in the leaves, and thus A is regarded as the immediate, short-term benefit. In photosynthesizing leaves, CO2 diffusion from the air to the carboxylation site is hindered by several structural and biochemical barriers. CO2 diffusion from the intercellular air space to the chloroplast stroma is obstructed by the mesophyll resistance. The inverses is the mesophyll conductance (gm). Whether various plants realize an optimal gm, and how much investment is needed for a relevant gm, remain unsolved. SCOPE: This review examines relationships among leaf construction costs (CC), leaf maintenance costs (MC) and gm in various plants under diverse growth conditions. Through a literature survey, we demonstrate a strong linear relationship between leaf mass per area (LMA) and leaf CC. The overall correlation of CC vs. gm across plant phylogenetic groups is weak, but significant trends are evident within specific groups and/or environments. Investment in CC is necessary for an increase in LMA and mesophyll cell surface area (Smes). This allows the leaf to accommodate more chloroplasts, thus increasing A. However, increases in LMA and/or Smes often accompany other changes, such as cell wall thickening, which diminishes gm. Such factors that make the correlations of CC and gm elusive are identified. CONCLUSIONS: For evaluation of the contribution of gm to recover CC, leaf life span is the key factor. The estimation of MC in relation to gm, especially in terms of costs required to regulate aquaporins, could be essential for efficient control of gm over the short term. Over the long term, costs are mainly reflected in CC, while benefits also include ultimate fitness attributes in terms of integrated carbon gain over the life of a leaf, plant survival and reproductive output.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Análisis Costo-Beneficio , Células del Mesófilo , Filogenia , Hojas de la Planta/fisiología
5.
Physiol Plant ; 174(2): e13644, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35112363

RESUMEN

The recovery from photoinhibition is much slower in photosystem (PS) I than in PSII; therefore, the susceptibility of PSI to photoinhibition is important with respect to photosynthetic production under special physiological conditions. Previous studies have shown that repetitive short-pulse (rSP) illumination selectively induces PSI photoinhibition. Depending on the growth light intensity or the variety/species of the plant, PSI photoinhibition is different, but the underlying mechanisms remain unknown. Here, we aimed to clarify whether the differences in the susceptibility of PSI to photoinhibition depend on environmental factors or on rice varieties and which physiological properties of the plant are related to this susceptibility. We exposed mature leaves of rice plants to rSP illumination. We examined the effects of elevated CO2 concentration and low N during growth on the susceptibility of PSI to photoinhibition and compared it in 12 different varieties. We fitted the decrease in the quantum yield of PSI during rSP illumination and estimated a parameter indicating susceptibility. Low N level increased susceptibility, whereas elevated CO2 concentration did not. The susceptibility differed among different rice varieties, and many indica varieties showed higher susceptibility than the temperate japonica varieties. Susceptibility was negatively correlated with the total chlorophyll content and N content. However, the decrease in P m ' value, an indicator of damaged PSI, was positively correlated with chlorophyll content. This suggests that in leaves with a larger electron transport capacity, the overall PSI activity may be less susceptible to photoinhibition, but more damaged PSI may accumulate during rSP illumination.


Asunto(s)
Oryza , Complejo de Proteína del Fotosistema II , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Clorofila , Luz , Oryza/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/fisiología
6.
J Exp Bot ; 72(11): 3971-3986, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33780533

RESUMEN

The key role of cell walls in setting mesophyll conductance to CO2 (gm) and, consequently, photosynthesis is reviewed. First, the theoretical properties of cell walls that can affect gm are presented. Then, we focus on cell wall thickness (Tcw) reviewing empirical evidence showing that Tcw varies strongly among species and phylogenetic groups in a way that correlates with gm and photosynthesis; that is, the thicker the mesophyll cell walls, the lower the gm and photosynthesis. Potential interplays of gm, Tcw, dehydration tolerance, and hydraulic properties of leaves are also discussed. Dynamic variations of Tcw in response to the environment and their implications in the regulation of photosynthesis are discussed, and recent evidence suggesting an influence of cell wall composition on gm is presented. We then propose a hypothetical mechanism for the influence of cell walls on photosynthesis, combining the effects of thickness and composition, particularly pectins. Finally, we discuss the prospects for using biotechnology for enhancing photosynthesis by altering cell wall-related genes.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Dióxido de Carbono/metabolismo , Pared Celular/metabolismo , Células del Mesófilo , Filogenia , Hojas de la Planta
7.
Plant Cell Environ ; 42(4): 1257-1269, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30468514

RESUMEN

C3 photosynthesis is often limited by CO2 diffusivity or stomatal (gs ) and mesophyll (gm ) conductances. To characterize effects of stomatal closure induced by either high CO2 or abscisic acid (ABA) application on gm , we examined gs and gm in the wild type (Col-0) and ost1 and slac1-2 mutants of Arabidopsis thaliana grown at 390 or 780 µmol mol-1 CO2 . Stomata of these mutants were reported to be insensitive to both high CO2 and ABA. When the ambient CO2 increased instantaneously, gm decreased in all these plants, whereas gs in ost1 and slac1-2 was unchanged. Therefore, the decrease in gm in response to high CO2 occurred irrespective of the responses of gs . gm was mainly determined by the instantaneous CO2 concentration during the measurement and not markedly by the CO2 concentration during the growth. Exogenous application of ABA to Col-0 caused the decrease in the intercellular CO2 concentration (Ci ). With the decrease in Ci , gm did not increase but decreased, indicating that the response of gm to CO2 and that to ABA are differently regulated and that ABA content in the leaves plays an important role in the regulation of gm .


Asunto(s)
Ácido Abscísico/farmacología , Dióxido de Carbono/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Estomas de Plantas/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Arabidopsis/fisiología , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/metabolismo , Transpiración de Plantas/efectos de los fármacos , Transpiración de Plantas/fisiología
8.
J Exp Bot ; 70(18): 4807-4818, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31056658

RESUMEN

Decreases in photosynthetic rate, stomatal conductance (gs), and mesophyll conductance (gm) are often observed under elevated CO2 conditions. However, which anatomical and/or physiological factors contribute to the decrease in gm is not fully understood. Arabidopsis thaliana wild-type and carbon-metabolism mutants (gwd1, pgm1, and cfbp1) with different accumulation patterns of non-structural carbohydrates were grown at ambient (400 ppm) and elevated (800 ppm) CO2. Anatomical and physiological traits of leaves were measured to investigate factors causing the changes in gm and in the mesophyll resistance (expressed as the reciprocal of mesophyll conductance per unit chloroplast surface area facing to intercellular space, Sc/gm). When grown at elevated CO2, all the lines showed increases in cell wall mass, cell wall thickness, and starch content, but not in leaf thickness. gm measured at 800 ppm CO2 was significantly lower than at 400 ppm CO2 in all the lines. Changes in Sc/gm were associated with thicker cell walls rather than with excess starch content. The results indicate that the changes in gm and Sc/gm that occur in response to elevated CO2 are independent of non-structural carbohydrates, and the cell wall represents a greater limitation factor for gm than starch.


Asunto(s)
Arabidopsis/fisiología , Dióxido de Carbono/metabolismo , Células del Mesófilo/efectos de los fármacos , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Células del Mesófilo/metabolismo , Células del Mesófilo/ultraestructura , Microscopía Electrónica de Transmisión , Hojas de la Planta/metabolismo
9.
Plant Cell Environ ; 38(3): 388-98, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24995523

RESUMEN

Under drought conditions, leaf photosynthesis is limited by the supply of CO2 . Drought induces production of abscisic acid (ABA), and ABA decreases stomatal conductance (gs ). Previous papers reported that the drought stress also causes the decrease in mesophyll conductance (gm ). However, the relationships between ABA content and gm are unclear. We investigated the responses of gm to the leaf ABA content [(ABA)L ] using an ABA-deficient mutant, aba1, and the wild type (WT) of Nicotiana plumbaginifolia. We also measured leaf water potential (ΨL ) because leaf hydraulics may be related to gm . Under drought conditions, gm decreased with the increase in (ABA)L in WT, whereas both (ABA)L and gm were unchanged by the drought treatment in aba1. Exogenously applied ABA decreased gm in both WT and aba1 in a dose-dependent manner. ΨL in WT was decreased by the drought treatment to -0.7 MPa, whereas ΨL in aba1 was around -0.8 MPa even under the well-watered conditions and unchanged by the drought treatment. From these results, we conclude that the increase in (ABA)L is crucial for the decrease in gm under drought conditions. We discuss possible relationships between the decrease in gm and changes in the leaf hydraulics.


Asunto(s)
Ácido Abscísico/metabolismo , Nicotiana/fisiología , Sequías , Mutación , Fotosíntesis , Reguladores del Crecimiento de las Plantas , Nicotiana/genética , Agua/fisiología
10.
J Plant Res ; 124(3): 425-30, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21052766

RESUMEN

NRT1.1 is a putative nitrate sensor and is involved in many nitrate-dependent responses. On the other hand, a nitrate-independent function of NRT1.1 has been implied, but the clear-cut evidence is unknown. We found that NRT1.1 mutants showed enhanced tolerance to concentrated ammonium as sole N source in Arabidopsis thaliana. This unique phenotype was not observed in mutants of NLP7, which has been suggested to play a role in the nitrate-dependent signaling pathway. Our real-time PCR analysis, and evidence from a literature survey revealed that several genes relevant to the aliphatic glucosinolate-biosynthetic pathway were regulated via a nitrate-independent signal from NRT1.1. When taken together, the present study strongly suggests the existence of a nitrate-independent function of NRT1.1.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Arabidopsis/crecimiento & desarrollo , Glucosinolatos/genética , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Concentración de Iones de Hidrógeno , Mutación , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Compuestos de Amonio Cuaternario/metabolismo
11.
iScience ; 19: 461-473, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31437750

RESUMEN

ß-Cyclocitral (ß-CC) is a volatile compound deriving from 1O2 oxidation of ß-carotene in plant leaves. ß-CC elicits a retrograde signal, modulating 1O2-responsive genes and enhancing tolerance to photooxidative stress. Here, we show that ß-CC is converted into water-soluble ß-cyclocitric acid (ß-CCA) in leaves. This metabolite is a signal that enhances plant tolerance to drought by a mechanism different from known responses such as stomatal closure, osmotic potential adjustment, and jasmonate signaling. This action of ß-CCA is a conserved mechanism, being observed in various plant species, and it does not fully overlap with the ß-CC-dependent signaling, indicating that ß-CCA induces only a branch of ß-CC signaling. Overexpressing SCARECROW-LIKE14 (SCL14, a regulator of xenobiotic detoxification) increased drought tolerance and potentiated the protective effect of ß-CCA, showing the involvement of the SCL14-dependent detoxification in the phenomenon. ß-CCA is a bioactive apocarotenoid that could potentially be used to protect crop plants against drought.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA