Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Strength Cond Res ; 37(11): e588-e592, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37099441

RESUMEN

ABSTRACT: Shiotani, H, Mizokuchi, T, Yamashita, R, Naito, M, and Kawakami, Y. Influence of body mass on running-induced changes in mechanical properties of plantar fascia. J Strength Cond Res 37(11): e588-e592, 2023-Body mass is a major risk factor for plantar fasciopathy; however, evidence explaining the process between risk factors and injury development is limited. Long-distance running induces transient and site-specific reduction in plantar fascia (PF) stiffness, reflecting mechanical fatigue and microscopic damage within the tissue. As greater mechanical loads can induce greater reduction in tissue stiffness, we hypothesized that the degree of running-induced change in PF stiffness is associated with body mass. Ten long-distance male runners (age: 21 - 23 years, body mass: 55.5 ± 4.2 kg; mean ± SD ) and 10 untrained men (age: 20 - 24 years, body mass: 58.4 ± 5.6 kg) ran for 10 km. Before and immediately after running, the shear wave velocity (SWV) of PF at the proximal site, which is an index of tissue stiffness, was measured using ultrasound shear wave elastography. Although the PF SWV significantly decreased after running in runners (-4.0%, p = 0.010) and untrained men (-21.9%, p < 0.001), runners exhibited smaller changes ( p < 0.001). The relative changes in SWV significantly correlated with body mass in both runners ( r = -0.691, p = 0.027) and untrained individuals ( r = -0.723, p = 0.018). These results indicate that a larger body mass is associated with a greater reduction in PF stiffness. Our findings provide in vivo evidence of the biomechanical basis for body mass as a risk factor for plantar fasciopathy. Furthermore, group differences suggest possible factors that reduce the fatigue responses, such as adaptation enhancing the resilience of PF and running mechanics.


Asunto(s)
Fascitis Plantar , Carrera , Humanos , Masculino , Adulto Joven , Adulto , Fenómenos Biomecánicos , Músculo Esquelético/fisiología , Carrera/fisiología , Fascia/diagnóstico por imagen
2.
Scand J Med Sci Sports ; 30(8): 1360-1368, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32306478

RESUMEN

Long-distance running (LDR) can induce transient lowering of the foot arch, which may be associated with mechanical fatigue of the plantar fascia (PF). However, this has not been experimentally tested in vivo. The purpose of this study was to test our hypothesis that LDR induces transient and site-specific changes in PF stiffness and morphology and that those changes are related to the lowering of the foot arch. Ten male recreational long-distance runners and 10 untrained men were requested to run overground for 10 km. Before and after running, shear wave velocity (SWV: an index of soft tissue stiffness) and thickness of PF at three different sites from its proximal to distal end were measured using supersonic shear imaging and B-mode ultrasonography. Foot dimensions including the navicular height were measured using a three-dimensional foot scanner. SWV at the proximal site of PF and navicular height was significantly decreased in both groups after running, with a higher degree in untrained men (-21.9% and -14.1%, respectively) than in runners (-4.0% and -6.3%, respectively). The relative change (%Δ) in SWV was positively correlated with %Δnavicular height in both groups (r = .69 and r = .65, respectively). Multiple regression analysis revealed that %ΔSWV at the proximal site solely explained 72.7% of the total variance in %Δnavicular height. It is concluded that LDR induces transient and site-specific decreases in PF stiffness. These results suggest that the majority of running-induced lowering of the foot arch is attributable to the reduction of PF stiffness at the proximal site.


Asunto(s)
Fascia/fisiología , Pie/fisiología , Carrera/fisiología , Fenómenos Biomecánicos , Humanos , Masculino , Adulto Joven
3.
Sci Rep ; 11(1): 9260, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33927340

RESUMEN

Human steady-state locomotion modes are symmetrical, leading to symmetric mechanical function of human feet in general; however, track distance running in a counterclockwise direction exposes the runner's feet to asymmetrical stress. This may induce asymmetrical adaptation in the runners' foot arch functions, but this has not been experimentally tested. Here, we show that the plantar fascia (PF), a primary structure of the foot arch elasticity, is stiffer for the left than the right foot as a characteristic of runners, via a cross-sectional study on 10 track distance runners and 10 untrained individuals. Shear wave velocity (index of tissue stiffness: SWV) and thickness of PF and foot dimensions were compared between sides and groups. Runners showed higher PF SWV in their left (9.4 ± 1.0 m/s) than right (8.9 ± 0.9 m/s) feet, whereas untrained individuals showed no bilateral differences (8.5 ± 1.5 m/s and 8.6 ± 1.7 m/s, respectively). Additionally, runners showed higher left to right (L/R) ratio of PF SWV than untrained men (105.1% and 97.7%, respectively). PF thickness and foot dimensions were not significantly different between sides or groups. These results demonstrate stiffer PF in the left feet of runners, which may reflect adaptation to their running-specific training that involves asymmetrical mechanical loading.


Asunto(s)
Fascitis Plantar/fisiopatología , Carrera/fisiología , Adulto , Atletas , Fenómenos Biomecánicos , Estudios Transversales , Humanos , Masculino , Músculo Esquelético/fisiología , Adulto Joven
4.
J Biomech ; 85: 198-203, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30665708

RESUMEN

The purpose of this study was to investigate the site- and sex-differences in the morphological and mechanical properties of the plantar fascia (PF) in humans. The thickness and shear wave velocity (SWV) of PF at five different sites between the medial calcaneal tubercle and the second toe were measured for 40 healthy young participants (20 males and 20 females) using supersonic shear imaging (SSI). The thickness and SWV measurements were highly repeatable (ICC ≥ 0.93). The proximal sites of PF around the calcaneal attachment were significantly thicker and stiffer (higher SWV values) than the middle and distal sites (p < 0.05). In addition, females had significantly thinner PF in proximal and middle sites than males, while being significantly stiffer in regardless of the sites, compared with males (p < 0.05). The results of the present study partly support previous findings on the site- and sex-differences in PF morphology, and further reveal inhomogeneity and sex-specificity of PF stiffness. The present study widely opens the possibility of evaluating PF functions in vivo.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Fascia , Pie , Adulto , Fenómenos Biomecánicos , Calcáneo/diagnóstico por imagen , Fascia/anatomía & histología , Fascia/diagnóstico por imagen , Femenino , Pie/anatomía & histología , Pie/diagnóstico por imagen , Voluntarios Sanos , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagen , Factores Sexuales , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA