Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 260: 119618, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39009211

RESUMEN

Lignites are widely available and cost-effective in many countries. Sustainable methods for their utilization drive innovation, potentially advancing environmental sustainability and resource efficiency. In the present study, Fe3O4 (∼25.1 nm) supported on KOH-activated lignite (A-L) displayed 8 times higher phosphate removal than pristine A-L (67.6 mg/g vs. 8.5 mg/g at pH 5, 50 mg of absorbent in 25 mL of 1500 ppm [phosphate]), owing to its abundant Fe3O4 (10 wt% of Fe) nanoparticle content. The removal occurred within ∼2 h, following a pseudo-second-order kinetic model. Across pH levels ranging from 5.0 to 9.0, Fe3O4-A-L's phosphate removal occurs via both chemisorption and precipitation, as evident by kinetic, pH, and XPS analyses. The phosphate adsorption fits better with the Freundlich isotherm. The combined benefits of facile recovery, rapid phosphate uptake, straightforward regeneration, and attractive post-adsorption benefits (e.g., possibly use as a Fe, P-rich fertilizer) make magnetic Fe3O4-A-L a promising candidate for real-world applications. Artificial Neural Network (ANN) modeling indicates an excellent accuracy (R2 = 0.99) in predicting the amount of phosphate removed by Fe3O4-A-L. Sensitivity analysis revealed both temperature and initial concentration as the most influencing factors. Leveraging lignite in environmentally friendly applications not only addresses immediate challenges but also aligns with sustainability goals. The study clearly articulates the potential benefits of utilizing lignite for sustainable phosphate removal and recovery, offering avenues for mitigating environmental concerns while utilizing resources efficiently.


Asunto(s)
Redes Neurales de la Computación , Fosfatos , Contaminantes Químicos del Agua , Fosfatos/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Adsorción , Carbón Mineral , Compuestos Férricos/química , Cinética , Concentración de Iones de Hidrógeno , Purificación del Agua/métodos
2.
J Environ Manage ; 339: 117863, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37080104

RESUMEN

Biochar can directly hold cations in soil because of the negative charge that exists on its surfaces. Besides, improving soil cation exchange capacity, the negative charges on biochar surfaces can buffer acid soil by protonation and deprotonation mechanisms. Moreover, biochar ameliorates soil acidity due to the presence of oxides, carbonates, and hydroxides of its basic cations (Ca, Na, K, and Mg). Both biochar surface functional group and basic cation concentrations can be altered by modification with chemical agents which can affect its soil pH buffering capacity. However, the impact of modified biochar application on soil pH buffering capacity is still scanty. This study investigated the pH buffering capacity of acidic soil amended with three P-enriched modified Douglas fir biochars and compared this buffering capacity to amendment with untreated Douglas fir biochar. These three P-enriched biochars, were prepared by treating Douglas fir biochar (DFB), respectively, with: 1) anhydrous calcium chloride (CaCl2) and potassium phosphate monobasic (KH2PO4), 2) calcium carbonate (CaCO3) and diammonium phosphate {(NH4)2HPO4} and 3) an aqueous solution of magnesium sulfate (MgSO4), potassium hydroxide (KOH) and potassium phosphate monobasic (KH2PO4). The three P-enriched biochars were designated as CCPP, CAPP and MSPP, respectively. The soil pH buffering abilities were largely dependent on the added biochar's alkalinity and ash contents. The residual soil CEC was highly correlated (r ≥ 0.9), with the soil buffering capacity. Both alkalinity and pH buffering capacity improved following the order CCAP > CCPP > MSPP > DFB, while residual soil CEC followed the order CAPP > MSPP > CCPP > DFB. The pH buffering capacity of the soil after amendments with 10% CAPP, CCPP MSPP and BFB rose by 84.8, 58.3, 3.0 and 2.5%, respectively. Whereas MSPP had higher concentrations of K+ and Mg2+, greater concentrations of Ca2+ were present in CCAP and CCPP than MSPP. So, Ca2+ concentrations in biochar exerts a greater influence on alkalinity and buffering capacity than Mg2+ and K+ because of 1) its smaller effective hydration radius and larger charge density. 2) calcium hydroxide has a greater water solubility than magnesium hydroxide providing more available base. Since pH buffering capacity depends on cation exchange sites, soil additives containing Ca2+ are prone to create greater impacts than Mg2+ and K+ additives.


Asunto(s)
Contaminantes del Suelo , Suelo , Suelo/química , Carbón Orgánico/química , Cationes , Concentración de Iones de Hidrógeno , Contaminantes del Suelo/química
3.
Small ; 17(34): e2007840, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33899324

RESUMEN

A noticeable interest and steady rise in research studies reporting the design and assessment of smart adsorbents for sequestering aqueous metal ions and xenobiotics has occurred in the last decade. This motivates compiling and reviewing the characteristics, potentials, and performances of this new adsorbent generation's metal ion and xenobiotics sequestration. Herein, stimuli-responsive adsorbents that respond to its media (as internal triggers; e.g., pH and temperature) or external triggers (e.g., magnetic field and light) are highlighted. Readers are then introduced to selective adsorbents that selectively capture materials of interest. This is followed by a discussion of self-healing and self-cleaning adsorbents. Finally, the review ends with research gaps in material designs.


Asunto(s)
Restauración y Remediación Ambiental , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Metales , Contaminantes Químicos del Agua/análisis
4.
Chem Rev ; 119(6): 3510-3673, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30830758

RESUMEN

In the last few decades, pharmaceuticals, credited with saving millions of lives, have emerged as a new class of environmental contaminant. These compounds can have both chronic and acute harmful effects on natural flora and fauna. The presence of pharmaceutical contaminants in ground waters, surface waters (lakes, rivers, and streams), sea water, wastewater treatment plants (influents and effluents), soils, and sludges has been well doccumented. A range of methods including oxidation, photolysis, UV-degradation, nanofiltration, reverse osmosis, and adsorption has been used for their remediation from aqueous systems. Many methods have been commercially limited by toxic sludge generation, incomplete removal, high capital and operating costs, and the need for skilled operating and maintenance personnel. Adsorption technologies are a low-cost alternative, easily used in developing countries where there is a dearth of advanced technologies, skilled personnel, and available capital, and adsorption appears to be the most broadly feasible pharmaceutical removal method. Adsorption remediation methods are easily integrated with wastewater treatment plants (WWTPs). Herein, we have reviewed the literature (1990-2018) illustrating the rising environmental pharmaceutical contamination concerns as well as remediation efforts emphasizing adsorption.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Preparaciones Farmacéuticas/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Animales , Quimioterapia/estadística & datos numéricos , Agua Subterránea , Humanos , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Contaminantes Químicos del Agua/química , Contaminación Química del Agua/estadística & datos numéricos
5.
Environ Res ; 192: 110283, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33022217

RESUMEN

Biochar-based hybrid composites containing added nano-sized phases are emerging adsorbents. Biochar, when functionalized with nanomaterials, can enhance pollutant removal when both the nanophase and the biochar surface act as adsorbents. Three different pine wood wastes (particle size < 0.5 mm, 10 g) were preblended with 1 wt% of three different graphenes in aqueous suspensions, designated as G1, G2, and G3. G1 (SBET, 8.1 m2/g) was prepared by sonicating graphite made from commercial synthetic graphite powder (particle size 7-11 µm). G2 (312.0 m2/g) and G3 (712.0 m2/g) were purchased commercial graphene nanoplatelets (100 mg in 100 mL deionized water). These three pine wood-graphene mixtures were pyrolyzed at 600 °C for 1 h to generate three graphene-biochar adsorbents, GPBC-1, GPBC-2, and GPBC-3 containing 4.4, 4.9, and 5.0 wt% of G1, G2, and G3 respectively. Aqueous Cu2+ adsorption capacities were 10.6 mg/g (GPBC-1), 4.7 mg/g (GPBC-2), and 5.5 mg/g (GPBC-3) versus 7.2 mg/g for raw pine wood biochar (PBC) (0.05 g adsorbent dose, Cu2+ 75 mg/L, 25 mL, pH 6, 24 h, 25 ± 0.5 °C). Increased graphene surface areas did not result in adsorption increases. GPBC-1, containing the lowest nanophase surface area with the highest Cu2+ capacity, was chosen to evaluate its Cu2+ adsorption characteristics further. Results from XPS showed that the surface concentration of oxygenated functional groups on the GPBC-1 is greater than that on the PBC, possibly contributing to its greater Cu2+ removal versus PBC. GPBC-1 and PBC uptake of Cu2+ followed the pseudo-second-order kinetic model. Langmuir maximum adsorption capacities and BET surface areas were 18.4 mg/g, 484.0 m2/g (GPBC-1) and 9.2 mg/g, 378.0 m2/g (PBC). This corresponds to 3.8 × 10-2 versus 2.4 × 10-2 mg/m2 of Cu2+ removed on GPBC-1 (58% more Cu2+ per m2) versus PBC. Cu2+ adsorption on both these adsorbents was spontaneous and endothermic.


Asunto(s)
Grafito , Pinus , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Cobre , Cinética , Agua , Contaminantes Químicos del Agua/análisis , Madera/química
6.
J Environ Manage ; 296: 113186, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34256294

RESUMEN

Biochar adsorbents can remove environmental pollutants and the remediation of Cr(VI) and nitrate are considered. Cr(VI) is a proven carcinogen causing serious health issues in humans and nitrate induced eutrophication causes negative effect on aquatic systems around the world. Douglas fir biochar (DFBC), synthesized by fast pyrolysis during syn gas production, was treated with aniline. Then, a polyaniline biochar (PANIBC) composite containing 47 wt% PANI was prepared by precipitating PANI on DFBC surfaces by oxidative chemical polymerization of aniline in 2M HCl. PANIBC exhibited a point of zero charge (PZC) of 3.0 and 8.2 m2/g BET (N2) surface area. This modified biochar was characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM) morphology and surface elements, and oxidation states by X-ray photoelectron spectroscopy (XPS). PANIBC exhibited positive surface charge below pH 3, making it an outstanding adsorbent, for Cr(VI) removal. Cr(VI) and nitrate removal mechanisms are presented based on XPS analysis. DFBC and PANIBC Cr(VI) and nitrate adsorption data were fitted to Langmuir and Freundlich isotherm models with maximum Langmuir adsorption capacities of 150 mg/g and 72 mg/g, respectively. Cr(VI) and nitrate removal at pH 2 and 6 were evaluated by reducing the amount of PANI (9 wt%) dispersed on to DFBC. Adsorption capacities verses temperature studies revealed that both Cr(VI) and nitrate adsorption are endothermic and thermodynamically favored. Regeneration studies were conducted on both DFBC and PANIBC using 0.1M NaOH and PANIBC exhibited excellent sorption capacities for Cr(VI) and nitrate in lake water samples and in the presence of competitive ions.


Asunto(s)
Cromo , Contaminantes Químicos del Agua , Adsorción , Compuestos de Anilina , Carbón Orgánico , Cromo/análisis , Humanos , Concentración de Iones de Hidrógeno , Cinética , Nitratos , Agua , Contaminantes Químicos del Agua/análisis
7.
Environ Sci Technol ; 53(5): 2635-2646, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30695634

RESUMEN

Biochar has been proposed as a soil amendment in agricultural applications due to its advantageous adsorptive properties, high porosity, and low cost. These properties allow biochar to retain soil nutrients, yet the effects of biochar on bacterial growth remain poorly understood. To examine how biochar influences microbial metabolism, Escherichia coli was grown in a complex, well-defined media and treated with either biochar or activated carbon. The concentration of metabolites in the media were then quantified at several time points using NMR spectroscopy. Several metabolites were immediately adsorbed by the char, including l-asparagine, l-glutamine, and l-arginine. However, we find that biochar quantitatively adsorbs less of these metabolic precursors when compared to activated carbon. Electron microscopy reveals differences in surface morphology after cell culture, suggesting that Escherichia coli can form biofilms on the surfaces of the biochar. An examination of significant compounds in the tricarboxylic acid cycle and glycolysis reveals that treatment with biochar is less disruptive than activated carbon throughout metabolism. While both biochar and activated carbon slowed growth compared to untreated media, Escherichia coli in biochar-treated media grew more efficiently, as indicated by a longer logarithmic growth phase and a higher final cell density. This work suggests that biochar can serve as a beneficial soil amendment while minimizing the impact on bacterial viability. In addition, the experiments identify a mechanism for biochar's effectiveness in soil conditioning and reveal how biochar can alter specific bacterial metabolic pathways.


Asunto(s)
Escherichia coli , Metabolómica , Carbón Orgánico , Suelo
8.
J Sep Sci ; 42(18): 3002-3008, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31294510

RESUMEN

Electromembrane extraction was used with high-performance liquid chromatography for preconcentration and determination of ampicillin residues in cow milk. Ampicillin is transferred from an aqueous solution through a thin layer containing octan-1-ol, silver nanoparticles, and reduced graphene oxide which serves as a supported liquid membrane. Inside the fiber impregnated with supported liquid membrane mixture was filled 10 µL of an acceptor phase. Experimental parameters were optimized for extraction efficiency of ampicillin. Under the optimized conditions, the proposed method provided acceptable linear range (2-100 µg/L), satisfactory repeatability (RSD% < 7.1), low limit of detection (0.6 µg/L), and a high enrichment factor (295) corresponding to extraction recovery of 37%. Consequently, the proposed method was successfully applied for the determination of ampicillin residues in different cow milks.


Asunto(s)
Ampicilina/análisis , Microextracción en Fase Líquida , Animales , Cromatografía Líquida de Alta Presión , Nanopartículas del Metal/química , Leche/química , Plata/química
9.
J Environ Manage ; 250: 109429, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31491719

RESUMEN

Magnetic Fe3O4/Douglas fir biochar composites (MBC) were prepared with a 29.2% wt. Fe3O4 loading and used to treat As(III)-contaminated water. Toxicity of As(III) (inorganic) is significantly greater than As(V) and more difficult to remove from water. Removal efficiency was optimized verses pH, contact time and initial concentration. Column sorption and regeneration were also studied. Adsorption kinetics data best fitted the pseudo second order model (R2 > 0.99). Adsorption was analyzed with three isotherm models at 20, 25 and 40 °C. The Sips isotherm showed the best fit at 25 °C with a 5.49 mg/g adsorption capacity, which is comparable with other adsorbents. MBC gave faster kinetics (~1-1.5 h) at pH 7 and ambient temperature than previous adsorbents. The Gibbs free energy (ΔG) of this spontaneous As(III) adsorption was -35 kJ/mol and ΔH = 70 kJ/mol was endothermic. Experiments were performed on industrial and laboratory wastewater samples in the presence of other co-existing contaminants (pharmaceutical residues, heavy metals ions and oxi-anions). The composite reduced the arsenic concentrations below the WHO's safe limit of 0.2 mg/L for waste water discharge. X-ray photoelectron spectroscopy (XPS) studies found As(III) and less toxic As(V) on Fe3O4 surfaces indicating adsorbed (or adsorbing) As(III) oxidation occurred upon contact with O2 and possibly dissolved Fe(III) or upon drying under oxic conditions. Under anoxic conditions magnetite to maghemite transformation drives the oxidation. A pH-dependent surface chemisorption mechanism was proposed governing adsorption aided by XPS studies vs pH.


Asunto(s)
Arsénico , Pseudotsuga , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico , Compuestos Férricos , Óxido Ferrosoférrico , Concentración de Iones de Hidrógeno , Cinética , Agua
10.
J Org Chem ; 82(11): 5678-5688, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28488857

RESUMEN

A regioselective synthesis of 6-alkyl- and 6-aryluracils was developed by the dimerization of 3-alkyl- and 3-aryl-2-propynamides promoted by either Cs2CO3 or K3PO4. A range of 3-aryl-2-propynamides, with both electron-deficient and electron-rich 3-aryl substituents, were successfully reacted in high yields. Cs+ acts as a soft Lewis acid to polarize the carbon-carbon triple bond, and solid K3PO4 interacts with carbonyl oxygen, promoting intermolecular nucleophilic attack by the only weakly nucleophilic amide nitrogen. Experiments were conducted to support the proposed mechanism.

11.
J Environ Sci (China) ; 35: 38-42, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26354690

RESUMEN

An improved method for trace level quantification of dicyandiamide in stream water has been developed. This method includes sample pretreatment using solid phase extraction. The extraction procedure (including loading, washing, and eluting) used a flow rate of 1.0mL/min, and dicyandiamide was eluted with 20mL of a methanol/acetonitrile mixture (V/V=2:3), followed by pre-concentration using nitrogen evaporation and analysis with high performance liquid chromatography-ultraviolet spectroscopy (HPLC-UV). Sample extraction was carried out using a Waters Sep-Pak AC-2 Cartridge (with activated carbon). Separation was achieved on a ZIC(®)-Hydrophilic Interaction Liquid Chromatography (ZIC-HILIC) (50mm×2.1mm, 3.5µm) chromatography column and quantification was accomplished based on UV absorbance. A reliable linear relationship was obtained for the calibration curve using standard solutions (R(2)>0.999). Recoveries for dicyandiamide ranged from 84.6% to 96.8%, and the relative standard deviations (RSDs, n=3) were below 6.1% with a detection limit of 5.0ng/mL for stream water samples.


Asunto(s)
Cromatografía Líquida de Alta Presión , Monitoreo del Ambiente/métodos , Guanidinas/análisis , Ríos/química , Extracción en Fase Sólida , Espectrofotometría Ultravioleta , Contaminantes Químicos del Agua/análisis , Límite de Detección
12.
Chemosphere ; 362: 142656, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908449

RESUMEN

Feedstock characteristics impact biochar physicochemical properties, and reproducible biochar properties are essential for any potential application. However, in most articles, feedstock aspects (i.e., taxonomic name of the species, part of the plant, and phenological phase) are scarcely reported. This research aimed at studying the effect of species and phenological stage of the feedstock on the properties of the derived biochars and, thus, adsorption capacities in water treatment. In this study, we analysed the anatomical characteristics of three different woody bamboo species [Guadua chacoensis (GC), Phyllostachys aurea (PA), and Bambusa tuldoides (BT)] in culms harvested at two different phenological phases (young and mature), and statistically correlated them with the characteristics of the six derived biochars, including their adsorption performance in aqueous media. Sclerenchyma fibres and parenchyma cells diameter and cell-wall width significantly differed among species. Additionally, sclerenchyma fibres and parenchyma cell-wall width as well as sclerenchyma fibre cell diameters are dependent on the phenological phase of the culms. Consequently, differences in biochar characteristics (i.e., yield and average pore diameter) were also observed, leading to differential methylene blue (MB) adsorption capacities between individuals at different phenological phases. MB adsorption capacities were higher for biochar produced from young culms compared to those obtained from matures ones (i.e., GC: 628.66 vs. 507.79; BT: 537.45 vs. 477.53; PA: 477.52 vs. 462.82 mg/g), which had smaller cell wall widths leading to a lower percentage of biochar yield. The feedstock anatomical properties determined biochar characteristics which modulated adsorption capacities.


Asunto(s)
Bambusa , Carbón Orgánico , Azul de Metileno , Carbón Orgánico/química , Azul de Metileno/química , Adsorción , Bambusa/química , Purificación del Agua/métodos , Madera/química
13.
J AOAC Int ; 96(6): 1440-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24645527

RESUMEN

We present an improved method for trace level quantification of five estrogens including estriol, estrone, 17alpha-estradiol, 17beta-estradiol, and 17alpha-ethinylestradiol in wastewaters. Our method includes sample preparation using SPE followed by a Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) cleanup step, a derivatization, and LC/MS/MS determination. Sample extraction was carried out using Oasis HLB cartridges and a dispersive solid-phase cleanup pack containing MgSO4 and primary-secondary amine and C18 sorbents. The resulting extract was derivatized with dansyl chloride. Separation was achieved on an Agilent Zorbax Extend C18, Narrow Bore RR 2.1 x 100 mm, 3.5 pm column; quantification was accomplished in the positive ion mode using multiple reaction monitoring. The cleanup method is quick, efficient, inexpensive, and requires only 200 mL of water. Reliable linearities were obtained for all calibration curves (r2 > 0.995). Matrix effects calculated were less than 12% for all analytes, and, hence, matrix matched calibration curves were not needed. The recoveries for the estrogens ranged from 81-103%, with a high repeatability (n = 3, RSD < or = 9%) and low LOQs (0.6-0.9 ng/L). The method was used to analyze effluent and influent wastewaters in Mississippi wastewater treatment plants, but it is broadly applicable for the determination of trace estrogens in any municipal wastewater samples.


Asunto(s)
Cromatografía Liquida/métodos , Estrógenos/análisis , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Calibración , Compuestos de Dansilo/química , Residuos de Medicamentos/análisis , Estradiol/química , Estriol/química , Estrona/química , Metanol/química , Control de Calidad , Reproducibilidad de los Resultados , Aguas Residuales
14.
J Hazard Mater ; 443(Pt B): 130257, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36345063

RESUMEN

Molybdenum (Mo) is a naturally-occurring trace element in drinking water. Most commonly, molybdate anions (MoO42-) are in well water and breast milk. In addition, it is used in medical image testing. Recently, the EPA classified Mo as a potential contaminant, as exposure can lead to health effects such as gout, hyperuricemia, and even lung cancer. We have assessed the sorptive removal of aqueous molybdate using Douglas fir biochar (DFBC) and a hybrid DFBC/Fe3O4 composite containing chemically-coprecipitated iron oxide (Fe3O4). Adsorption was studied at various: pH values, equilibrium times (5 min-24 h), initial Mo concentrations (2.5-1000 mg/L), and temperatures (5, 25, and 40 °C) using batch sorption and fixed-bed column equilibrium methods. Langmuir capacities for DFBC and DFBC/Fe3O4 (at pH 3, 2 hrs equilibrium) were within 459.3-487.9 mg/g and 288-572 mg/g, respectively. These adsorbents and their Mo-laden counterparts were characterized by elemental analysis, BET, PZC, SEM, TEM, EDS, XRD, and XPS. MoO42- adsorption on DFBC is thought to be governed primarily via electrostatic attraction. Adsorption by DFBC/Fe3O4 is primarily governed by chemisorption onto magnetite surface hydroxyl groups, while electrostatics prevail in the DFBC-exposed phase. Stoichiometric precipitation of iron molybdates triggered by iron dissolution was also considered. The data suggest that DFBC and DFBC/Fe3O4 are promising candidates for molybdate sorption.


Asunto(s)
Pseudotsuga , Contaminantes Químicos del Agua , Humanos , Molibdeno , Contaminantes Químicos del Agua/análisis , Carbón Orgánico/química , Adsorción , Agua/química , Hierro/química , Cinética
15.
J Colloid Interface Sci ; 614: 603-616, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35123214

RESUMEN

This is the first report of the metal Fe-Ti oxide/biochar (Fe2TiO5/BC) composite for simultaneous removal of aqueous Pb2+, Cr6+, F- and methylene blue (MB). Primary Fe2TiO5 nano particles and aggregates were dispersed on a high surface area Douglas fir BC (∼700 m2/g) by a simple chemical co-precipitation method using FeCl3 and TiO(acac)2 salts treated by base and heated to 80 °C. This was followed by calcination at 500 °C. This method previously was used without BC to make the neat mixed oxide Fe2TiO5, exhibiting a lower energy band gap than TiO2. Adsorption of Cr(VI), Pb(II), fluoride, and MB on Fe2TiO5/BC was studied as a function of pH, equilibrium time, initial adsorbate concentration, and temperature. Adsorption isotherm studies were conducted at 5, 25, and 45 ℃ and kinetics for all four adsorbates followed the pseudo second order model. Maximum Langmuir adsorption capacities for Pb2+, Cr6+, F- and MB at their initial pH values were 141 (pH 2), 200 (pH 5), 36 (pH 6) and 229 (pH 6) mg/g at 45 ℃ and 114, 180, 26 and 210 mg/g at 25 ℃, respectively. MB was removed from the water on Fe2TiO5/BC by synergistic adsorption and photocatalytic degradation at pH 3 and 6 under UV (365 nm) light irradiation. Cr6+, Pb2+, F-, and MB each exhibited excellent removal capacities in the presence of eight different competitive ions in simulated water samples. The removal mechanisms on Fe2TiO5/BC and various competitive ion interactions were proposed. Some iron ion leaching at pH 3 catalyzed Photo-Fenton destruction of MB. Fe2TiO5, BC, and Fe2TiO5/BC bandgaps were studied to help understand photocatalysis of MB and to advance supported metal oxide photodegradation using smaller energy band gaps than the larger bandgap of TiO2 for water treatment. A long range goal is to photocatalytically destroy some sorbates with adsorbents to avoid the need for regeneration steps.


Asunto(s)
Azul de Metileno , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Cromo/análisis , Fluoruros , Hierro , Cinética , Plomo , Óxidos , Titanio , Contaminantes Químicos del Agua/análisis
16.
Chemosphere ; 292: 133355, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34929276

RESUMEN

This study compared the lead (Pb2+) immobilization efficacy of biochar-supported phosphate to conventional in-situ heavy metal immobilization methods (with lime, neat biochar and phosphate). The biochar-supported phosphate was obtained by treating Douglas fir biochar (BC) with anhydrous calcium chloride and potassium dihydrogen phosphate. The amount of Pb2+ immobilized was determined by comparing the concentration of ammonium nitrate extractable Pb2+ lead from lead-spiked soil (without amendment) to that of a 30 d incubation with (a) lead-spiked soil plus 5% (wt./wt.) biochar supported-phosphate, (b) lead-spiked soil plus 5% (wt./wt.) untreated Douglas fir biochar, (c) lead-spiked soil plus 5% (w/w) lime and (d) lead-spiked soil plus 5% (wt./wt.) potassium dihydrogen phosphate. The control (lead-spiked soil without amendment) produced the largest quantity (96.08 ± 9.22 mg L-1) of NH4NO3-extractable Pb2+, while lead-spiked soil treated with 5% (wt./wt.) biochar-supported phosphate resulted in the lowest quantity of NH4NO3 extractable Pb2+ (0.3 ± 0.2 mg L-1). The mechanism for immobilization of Pb2+ by BP occurs at pH < 7 through dissolution of hydroxyapatite embedded in BP during modification, followed by precipitation of insoluble Pb10(PO4)6(OH)2. The residual lead fraction in the lead-spiked soil increased by 20.9% following amendment with BP. These results indicate that biochar-supported phosphate is a candidate to reduce lead mobility (bioavailability) in polluted soil. This amendment may lower Pb2+ uptake into plants while minimizing the potential for water contamination due to Pb2+mobility.


Asunto(s)
Pseudotsuga , Contaminantes del Suelo , Carbón Orgánico , Plomo , Fosfatos , Suelo , Contaminantes del Suelo/análisis
17.
Chemosphere ; 308(Pt 2): 136155, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36099986

RESUMEN

Per- and poly-fluoroalkyl substances (PFAS) can cause deleterious effects at low concentrations (70 ng/L). Their remediation is challenging. Aqueous µg/L levels of PFOS, PFOS, PFOSA, PFBS, GenX, PFHxS, PFPeA, PFHxA, and PFHpA (abbreviations defined in Table 1) multi-component adsorption (pH dependence, kinetics, isotherms, fixed-bed adsorption, regeneration, complex matrix) was studied on commercial Douglas fir biochar (BC) and its Fe3O4-containing BC. BC is a waste product when syn-gas is produced in a large scale from wet Douglas fir wood fed to gasification at 900-1000 °C and held for 1-20 s. This generates a relatively high surface area (∼700 m2/g) and large pore volume (∼0.25 cm3/g) biochar. Treatment of BC with FeCl3/FeSO4 and NaOH to chemically precipitate Fe3O4 onto BC. BC and its magnetic Fe3O4/BC analogue rapidly adsorbed (20-45 min equilibrium time) significant amounts of PFOS (∼14.6 mg/g) and PFOA (∼652 mg/g) at natural waters' pH range (6-8). Adsorption from µg/L concentrations has produced remediated aqueous PFAS concentrations of ∼50 ng/L or below the detection limits, which is closing in on EPA advisory limits. Column capacities of PFOS were 215.3 mg/g on BC and 51.9 mg/g Fe3O4/BC vs 53.0 mg/g and 21.8 mg/g, respectively, for PFOA. Hydrophobic and electrostatic interactions are thought to drive this sorption. Successful stripping regeneration by methanol was achieved. Thus, hydrophobic Douglas fir biochar produced by fast high temperature pyrolysis and its Fe3O4/BC analogue are adsorbent candidates for PFAS remediation from the dilute PFAS concentrations often found in polluted environments. Small Fe3O4/BC particles can be magnetically removed from batch treatments avoiding filtration.


Asunto(s)
Fluorocarburos , Pseudotsuga , Contaminantes Químicos del Agua , Carbón Orgánico , Fluorocarburos/análisis , Metanol , Hidróxido de Sodio , Residuos , Agua , Contaminantes Químicos del Agua/análisis
18.
Sci Total Environ ; 765: 142698, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33097261

RESUMEN

The year 2020 brought the news of the emergence of a new respiratory disease (COVID-19) from Wuhan, China. The disease is now a global pandemic and is caused by a virus named SARS-CoV-2 by international bodies. Important viral transmission sources include human contact, respiratory droplets and aerosols, and through contact with contaminated objects. However, viral shedding in feces and urine by COVID-19-afflicted patients raises concerns about SARS-CoV-2 entering aquatic systems. Recently, targeted SARS-CoV-2 genome fragments have been successfully detected in wastewater, sewage sludge and river waters around the world. Wastewater-based epidemiology (WBE) studies can provide early detection and assessment of COVID-19 transmission and the growth of active cases within given wastewater catchment areas. WBE surveillance's ability to detect the growth of cases was demonstrated. Was this science applied throughout the world as this pandemic spread throughout the globe? Wastewater treatment efficacy for SARS-CoV-2 removal and risk assessments associated with treated water are reported. Disinfection strategies using chemical disinfectants, heat and radiation for deactivating and destroying SARS-CoV-2 are explained. Analytical methods of SARS-CoV-2 detection are covered. This review provides a more complete overview of the present status of SARS-CoV-2 and its consequences in aquatic systems. So far, WBE programs have not yet served to provide the early alerts to authorities that they have the potential to achieve. This would be desirable in order to activate broad public health measures at earlier stages of local and regional stages of transmission.


Asunto(s)
COVID-19 , Infecciones por Coronavirus , Coronavirus , China/epidemiología , Humanos , SARS-CoV-2
19.
Chemosphere ; 269: 128409, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33069440

RESUMEN

Biochar has become a popular research topic in sustainable chemistry for use both in agriculture and pollution abatement. To enhance aqueous Cr(VI), Pb(II) and Cd(II) removal efficiency, high surface area (535 m2/g) byproduct Douglas fir biochar (DFBC) from commercial syn-gas production obtained by fast pyrolysis (900-1000 °C, 1-10 s), was subjected to a KOH activation. KOH-activated biochar (KOHBC) underwent a remarkable surface area increase to 1049 m2/g and a three-fold increase in pore volume (BET analysis). Batch sorption studies on KOHBC verses pH revealed that the highest chromium, lead and cadmium removal capacities occurred at pH 2.0, 5.0 and 6.0, respectively. KOHBC exhibited much higher adsorption capacities than unactivated DFBC. Heavy metal loadings onto KOHBC were characterized by scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Sorption of Cr(VI), Pb(II) and Cd(II) all followed pseudo-second order kinetics and the Langmuir adsorption model. The highest Langmuir adsorption capacities at the respective pH's of maximum adsorption were 140.0 mg g-1 Pb(II), 127.2 mg g-1 Cr(VI) and 29.0 mg g-1 Cd(II). Metal ions spiked into natural and laboratory waste water systems exhibited high sorption capacities. Desorption studies carried out using 0.1 M HCl revealed that Pb(II) adsorption onto the KOHBC surface is reversible. Portions of Cd(II) and Cr(VI) adsorbed strongly onto KOHBC were unable to be desorbed by 0.1 M HCl and 0.1 M NaOH.


Asunto(s)
Pseudotsuga , Contaminantes Químicos del Agua , Adsorción , Cadmio , Carbón Orgánico , Cromo/análisis , Concentración de Iones de Hidrógeno , Cinética , Plomo , Contaminantes Químicos del Agua/análisis
20.
J Colloid Interface Sci ; 597: 182-195, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33866210

RESUMEN

Phosphate is a primary plant nutrient, serving integral role in environmental stability. Excessive phosphate in water causes eutrophication; hence, phosphate ions need to be harvested from soil nutrient levels and water and used efficiently. Fe-Mg (1:2) layered double hydroxides (LDH) were chemically co-precipitated and widely dispersed on a cheap, commercial Douglas fir biochar (695 m2/g surface area and 0.26 cm3/g pore volume) byproduct from syn gas production. This hybrid multiphase LDH dispersed on biochar (LDHBC) robustly adsorbed (~5h equilibrium) phosphate from aqueous solutions in exceptional sorption capacities and no pH dependence between pH 1-11. High phosphate Langmuir sorption capacities were found for both LDH (154 to 241 mg/g) and LDH-modified biochar (117 to 1589 mg/g). LDHBC was able to provide excellent sorption performance in the presence of nine competitive anion contaminants (CO32-, AsO43-, SeO42-, NO3-, Cr2O72-, Cl-, F-, SO42-, and MoO42-) and also upon remediating natural eutrophic water samples. Regeneration was demonstrated by stripping with aqueous 1 M NaOH. No dramatic performance drop was observed over 3 sorption-stripping cycles for low concentrations (5 ppm). The adsorbents and phosphate-laden adsorbents were characterized using Elemental analysis, BET, PZC, TGA, DSC, XRD, SEM, TEM, and XPS. The primary sorption mechanism is ion-exchange from low to moderate concentrations (10-500 ppm). Chemisorption and stoichiometric phosphate compound formation were also considered at higher phosphate concentrations (>500 ppm) and at 40 °C. This work advances the state of the art for environmentally friendly phosphate reclamation. These phosphate-laden adsorbents also have potential to be used as a slow-release phosphate fertilizer.


Asunto(s)
Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Hidróxidos , Cinética , Fosfatos , Agua , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA