Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-28789919

RESUMEN

Long and very long chain fatty acids (LCFAs and VLCFAs) may play an active role in coronary artery diseases (CAD) etiology. Our aim was to evaluate the associations between LCPUFAs (C20:4n-6; C20:5n-3 and C22:6n-3) and VLCSFAs (C22:0, C24:0; and C26:0), as well as markers of peroxisomal integrity evaluated by phytanic acid and plasmalogen-C16:0 (PL-C16:0) in addition to the markers of lipid peroxidation (malondialdehyde [MDA] and conjugated dienes [CD]) and inflammation (high sensitivity C-reactive protein [hs-CRP]) with vascular severity evaluated by Gensini score in order to determine their possible effects on CAD in Tunisian population. Lipidomic strategy based on GC/MS-SIM was used to quantify LCPUFAs, VLCSFAs, and PL-C16:0 in red blood cells of CAD patients, non-CAD patients, and controls. We observed a significant increase in phytanic acid, PL-C16:0 and VLCFAs, particularly C26:0, in CAD group compared to controls. Further our findings showed positive correlations of C26:0 with MDA and with vascular severity score (Gensini score). In addition, a significant negative correlation was shown between hs-CRP and C22:6 n-3 (r=-0.297; p=0.002) and a significant positive association was observed between hs-CRP and C20:4 n-6 levels (r=0.196; p=0.039). Our results show changes in LCPUFAs and VLCSFAs concentrations in RBC among study groups, and suggest alterations in fatty acids metabolism regulated by elongase and desaturase enzymes. The positive correlations of C20:4n-6 and the negative correlations of C22:6n-3, simultaneously with Gensini score and hs-CRP, suggest a link of both inflammation and vascular severity complication of CAD with LCPUFAs and VLCSFAs. Induction of lipid oxidation, can be one of the outcomes of LCFAs and VLCFAs accumulation in vascular tissues and, thus, playing an important role in the pathogenesis of atherosclerosis. Quantification of LCPUFAs and VLCSFAs, phytanic acid and PL-C16:0 simultaneously, would be of great value for the screening of peroxisomal disorders in vascular tissue of CAD patients.


Asunto(s)
Enfermedad de la Arteria Coronaria/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Ácido Fitánico/metabolismo , Plasmalógenos/metabolismo , Biomarcadores/metabolismo , Estudios de Casos y Controles , Enfermedad de la Arteria Coronaria/epidemiología , Femenino , Humanos , Peroxidación de Lípido , Masculino , Persona de Mediana Edad , Túnez/epidemiología
2.
J Am Coll Nutr ; 35(2): 125-35, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25794039

RESUMEN

OBJECTIVES: A direct effect of process-induced trans-fatty acids (TFAs) on nonalcoholic fatty liver disease (NAFLD) as a cardiovascular disease (CVD) risk factor has previously been shown. We hypothesized that TFAs directly induced CVD. This article describes an investigation of the association between TFAs, provided by the consumption of oxidized soybean oil and margarine, and plasma lipid profiles, coronary artery lesions, and coronary fatty acids distribution in rats. Male rats were fed a standard chow or high-fat diet containing different TFA levels ranging from <1%, <2%, and >2% of total fat in fresh soybean oil, oxidized soybean oil, and margarine, respectively, for 4 weeks. RESULTS: The results indicated that the high-fat diets differently changed the plasma lipid profiles by significantlt increasing triglycerides, total cholesterol, low-density lipoprotein cholesterol, and the ratio of low-density to high-density lipoprotein cholesterol compared to control rats. Compared to fresh soybean oil, oxidized oil further increased plasma lipid markers. The strongest inflammatory effect was induced by margarine, which contains the highest level of TFAs, or 2% of total fat. Total TFAs in the heart of the margarine-fed group were increased by 4.7 regarding to control and by 2.17 and 2.6 relative to groups receiving oxidized and fresh oil, respectively. Increased TFAs consumption was associated with increased histological aspects of atherosclerotic lesions in a dose-dependent manner. CONCLUSION: In conclusion, process-induced TFAs cause changes including proatherogenic plasma lipid markers, heart fatty acid profiles, and coronary artery histology depending on the TFA level in the supplemented fat and therefore on the type of technological process used.


Asunto(s)
Grasas Insaturadas en la Dieta/administración & dosificación , Grasas Insaturadas en la Dieta/análisis , Dislipidemias/etiología , Miocardio/metabolismo , Ácidos Grasos trans/metabolismo , Animales , Hidrogenación , Masculino , Oxidación-Reducción , Ratas , Ratas Wistar
3.
BMC Complement Altern Med ; 16: 210, 2016 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-27405739

RESUMEN

BACKGROUND: For thousands of years, Tunisian geothermal water has been used in bathing. Indeed, thermal baths "Hammam" were recommended in the treatment of different type of illnesses as, for instance, for relaxing joints and soothing. The ability of microalgae to sustain at the high temperature makes them potential producers of high value thermostable bio-products. This study aimed to explore the therapeutic potential of the aqueous extracellular polysaccharides (AEPS) of the Tunisian thermophilic microalgae Graesiella sp. and to evaluate its physico-chemical characteristics. METHODS: Different parameters were used to characterize the AEPS. The dry weight, volatile dry weight, elemental analysis, monosaccharide composition and IR-spectroscopy analysis. Carbohydrate, uronic acid, ester sulfate and protein concentrations were also determined using colorimetric assay. AEPS was analyzed for its antioxidant propriety by means of total antioxidant capacity, DPPH radicals scavenging assay, ferrous chelating ability and hydroxyl and superoxide radical scavenging activity. The antiproliferative activity of AEPS was evaluated for HepG2 and Caco-2 cells using the MTT assay. RESULTS: The Graesiella sp. AEPS is found to be a hetero-sulfated-anionic polysaccharides that contain carbohydrate (52 %), uronic acids (23 %), ester sulfate (11 %) and protein (12 %). The carbohydrate fraction was formed by eight neutral sugars glucose, galactose, mannose, fucose, rhamnose, xylose, arabinose and ribose. The FT-IR revealed the presence of carboxyl, hydroxyl, amine and sulfate groups. AEPS showed high activity as reducing agent, high ferrous chelating capacity and caused a significant decrease in a concentration-dependent manner of hydroxyl radical. A moderate DPPH scavenging activity and a poor superoxide radical scavenging ability were also observed. AEPS treatment (from 0.01 to 2.5 mg/ml) caused also a clear decrease of cell viabilities in a dose-dependent manner. The IC50 values obtained in HepG2 and Caco-2 cells were 1.06 mg/ml and 0.3 mg/ml respectively. CONCLUSIONS: This study evidenced that the Graesiella sp. AEPS exhibits antioxidant and antiproliferative activities. The biological activities of this extract depend on its fine structural features. Further work will identify and purify the active polysaccharides to enhance our understanding of their complete structure and relationships with its function.


Asunto(s)
Antineoplásicos/farmacología , Antioxidantes/farmacología , Chlorophyta/química , Microalgas/química , Extractos Vegetales/farmacología , Polisacáridos Bacterianos/farmacología , Antineoplásicos/química , Antioxidantes/química , Células CACO-2 , Proliferación Celular/efectos de los fármacos , Células Hep G2 , Manantiales de Aguas Termales/microbiología , Humanos , Extractos Vegetales/química , Polisacáridos Bacterianos/química , Túnez
4.
BMC Complement Altern Med ; 16(1): 515, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27964734

RESUMEN

BACKGROUND: In Tunisia, the use of hot spring waters for both health and recreation is a tradition dating back to Roman times. In fact, thermal baths, usually called "Hammam" are recommended as a therapeutic and prophylactic measure against many types of illness and toxicity. While the chemical concentration of thermal water is admittedly associated with its therapeutic effects, the inclusion in spa waters of efficient bioproduct additives produced by photosynthetic microorganisms and that act against oxidative stress may comprise a significant supplementary value for thermal centers. The aim of this study was to investigate the antioxidant potential of the Tunisian thermophilic cyanobacterium Leptolyngbya sp. and to determine its phytochemical constituents and phenolic profile. METHODS: BME (Biomass Methanolic Extract), CME (Capsular polysaccharides Methanolic Extract) and RME (Releasing polysaccharides Methanolic Extract) of Leptolyngbya sp. were examined for their antioxidant activities by means of DPPH, hydroxyl radical scavenging and ferrous ion chelating assays. Their total phenols, flavonoids, carotenoids, Mycosporine-like amino acids (MAAs) and vitamin C contents, as well as their phenolic profiles were also determined. RESULTS: BME has the highest content of phenols (139 ± 1.2 mg/g), flavonoids (34.9 ± 0.32 mg CEQ/g), carotenoids (2.03 ± 0.56 mg/g) and vitamin C (15.7 ± 1.55 mg/g), while the highest MAAs content (0.42 ± 0.03 mg/g) was observed in CME. BME presented both the highest DPPH and hydroxyl radical scavenging ability with an IC50 of 0.07 and 0.38 mg/ml, respectively. The highest ferrous chelating capacity was detected in CME with an IC50 = 0.59 mg/ml. Phenolic profiles revealed the presence of 25 phenolic compounds with the existence of hydroxytyrosol, oleuropein, resveratrol and pinoresinol. CONCLUSION: The study demonstrated that the cyanobacterium Leptolyngbya sp. possesses abundant natural antioxidant products which may have prophylactic and therapeutic effects on many types of illness and toxicity. The present findings not only explain and reinforce the rationale behind traditional therapeutic practices in Tunisia in the exploitation of the country's hot springs, but support the addition of Leptolyngbya to thermal waters as a means to enhance the value and reputation of the curative nature of Tunisian thermal waters.


Asunto(s)
Balneología , Cianobacterias/química , Manantiales de Aguas Termales/química , Fenoles/análisis , Antioxidantes/análisis , Biomasa , Carotenoides/análisis , Cromatografía Líquida de Alta Presión , Flavonoides/análisis , Polisacáridos/análisis
5.
J Food Sci Technol ; 51(8): 1442-52, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25114334

RESUMEN

Numerous studies have focused on trans fatty acids (TFA) technologically produced by partial hydrogenation of oils. However, TFA can also be present in fresh oils. For this reason, cis fatty acid (CFA), TFA and conjugated linoleic acid (CLA) of fresh and heated Aleppo pine seed oil (APSO) at frying temperature (180 °C) were evaluated and correlated with the antioxidant characteristics. Results showed that fresh APSO had a low oleic/linoleic ratio O/L (0.4). Total TFA in fresh APSO reached 1%. The predominant TFA was 18:2 n-6 (t9, t12) in both fresh and heated APSO. Individual TFA increased with significant differences (p < 0.05) with heating time. CLA occurred after 4 h and significantly increased (p < 0.05) accounting 10% of total TFA after 10 h. Total TFA are negatively correlated with α-tocopherol, γ-tocopherol (p < 0.05) and carotenoïds (p < 0.01) and positively correlated with remaining DPPH. Oil stability index (OSI) showed significant negative correlation with TFA (r = -0.925; p = 0.008). A principal component analysis (PCA) showed a clear discrimination between fresh and heated oils. Temperature, heating time, unsaturation degree and antioxidants are combined factors which significantly affect the isomerization rate and nutritional quality of APSO.

6.
Nutr Metab (Lond) ; 8(1): 65, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21943357

RESUMEN

BACKGROUND: Trans-fatty acids (TFA) are known as a risk factor for coronary artery diseases, insulin resistance and obesity accompanied by systemic inflammation, the features of metabolic syndrome. Little is known about the effects on the liver induced by lipids and also few studies are focused on the effect of foods rich in TFAs on hepatic functions and oxidative stress. This study investigates whether high-fat diets with different TFA levels induce oxidative stress and liver dysfunction in rats. METHODS: Male Wistar rats were divided randomly into four groups (n = 12/group): C receiving standard-chow; Experimental groups that were fed high-fat diet included 20% fresh soybean oil diet (FSO), 20% oxidized soybean oil diet (OSO) and 20% margarine diet (MG). Each group was kept on the treatment for 4 weeks. RESULTS: A liver damage was observed in rats fed with high-fat diet via increase of liver lipid peroxidation and decreased hepatic antioxidant enzyme activities (superoxide dismutase, catalase and glutathione peroxidase). The intake of oxidized oil led to higher levels of lipid peroxidation and a lower concentration of plasma antioxidants in comparison to rats fed with FSO. The higher inflammatory response in the liver was induced by MG diet. Liver histopathology from OSO and MG groups showed respectively moderate to severe cytoplasm vacuolation, hypatocyte hypertrophy, hepatocyte ballooning, and necroinflammation. CONCLUSION: It seems that a strong relationship exists between the consumption of TFA in the oxidized oils and lipid peroxidation and non alcoholic fatty liver disease (NAFLD). The extent of the peroxidative events in liver was also different depending on the fat source suggesting that feeding margarine with higher TFA levels may represent a direct source of oxidative stress for the organism. The present study provides evidence for a direct effect of TFA on NAFLD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA