Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Neurosci ; 46: 145-165, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37428606

RESUMEN

Cell replacement therapy represents a promising approach for treating neurodegenerative diseases. Contrary to the common addition strategy to generate new neurons from glia by overexpressing a lineage-specific transcription factor(s), a recent study introduced a subtraction strategy by depleting a single RNA-binding protein, Ptbp1, to convert astroglia to neurons not only in vitro but also in the brain. Given its simplicity, multiple groups have attempted to validate and extend this attractive approach but have met with difficulty in lineage tracing newly induced neurons from mature astrocytes, raising the possibility of neuronal leakage as an alternative explanation for apparent astrocyte-to-neuron conversion. This review focuses on the debate over this critical issue. Importantly, multiple lines of evidence suggest that Ptbp1 depletion can convert a selective subpopulation of glial cells into neurons and, via this and other mechanisms, reverse deficits in a Parkinson's disease model, emphasizing the importance of future efforts in exploring this therapeutic strategy.


Asunto(s)
Neuronas , Enfermedad de Parkinson , Humanos , Neuronas/fisiología , Neuroglía , Encéfalo , Astrocitos/fisiología
2.
Nature ; 584(7820): E17, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32724206

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nature ; 582(7813): 550-556, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32581380

RESUMEN

Parkinson's disease is characterized by loss of dopamine neurons in the substantia nigra1. Similar to other major neurodegenerative disorders, there are no disease-modifying treatments for Parkinson's disease. While most treatment strategies aim to prevent neuronal loss or protect vulnerable neuronal circuits, a potential alternative is to replace lost neurons to reconstruct disrupted circuits2. Here we report an efficient one-step conversion of isolated mouse and human astrocytes to functional neurons by depleting the RNA-binding protein PTB (also known as PTBP1). Applying this approach to the mouse brain, we demonstrate progressive conversion of astrocytes to new neurons that innervate into and repopulate endogenous neural circuits. Astrocytes from different brain regions are converted to different neuronal subtypes. Using a chemically induced model of Parkinson's disease in mouse, we show conversion of midbrain astrocytes to dopaminergic neurons, which provide axons to reconstruct the nigrostriatal circuit. Notably, re-innervation of striatum is accompanied by restoration of dopamine levels and rescue of motor deficits. A similar reversal of disease phenotype is also accomplished by converting astrocytes to neurons using antisense oligonucleotides to transiently suppress PTB. These findings identify a potentially powerful and clinically feasible approach to treating neurodegeneration by replacing lost neurons.


Asunto(s)
Astrocitos/citología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/citología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Sustancia Negra/citología , Sustancia Negra/fisiología , Animales , Axones/fisiología , Dopamina/biosíntesis , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Femenino , Ribonucleoproteínas Nucleares Heterogéneas/deficiencia , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Técnicas In Vitro , Masculino , Ratones , Neostriado/citología , Neostriado/fisiología , Vías Nerviosas , Neurogénesis , Enfermedad de Parkinson/metabolismo , Fenotipo , Proteína de Unión al Tracto de Polipirimidina/deficiencia , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Sustancia Negra/metabolismo
4.
Annu Rev Pharmacol Toxicol ; 62: 211-233, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34990205

RESUMEN

Those with Down syndrome (DS)-trisomy for chromosome 21-are routinely impacted by cognitive dysfunction and behavioral challenges in children and adults and Alzheimer's disease in older adults. No proven treatments specifically address these cognitive or behavioral changes. However, advances in the establishment of rodent models and human cell models promise to support development of such treatments. A research agenda that emphasizes the identification of overexpressed genes that contribute demonstrably to abnormalities in cognition and behavior in model systems constitutes a rational next step. Normalizing expression of such genes may usher in an era of successful treatments applicable across the life span for those with DS.


Asunto(s)
Síndrome de Down , Enfermedades Neurodegenerativas , Anciano , Animales , Modelos Animales de Enfermedad , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/genética , Femenino , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Embarazo
5.
Ann Neurol ; 96(2): 390-404, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38747498

RESUMEN

OBJECTIVES: Due to increased gene dose for the amyloid precursor protein (APP), elderly adults with Down syndrome (DS) are at a markedly increased risk of Alzheimer's disease (AD), known as DS-AD. How the increased APP gene dose acts and which APP products are responsible for DS-AD is not well understood, thus limiting strategies to target pathogenesis. As one approach to address this question, we used a novel class of γ-secretase modulators that promote γ-site cleavages by the γ-secretase complex, resulting in lower levels of the Aß42 and Aß40 peptides. METHODS: Ts65Dn mice, which serve as a model of DS, were treated via oral gavage with 10 mg/kg/weekday of BPN15606 (a potent and novel pyridazine-containing γ-secretase modulators). Treatment started at 3 months-of-age and lasted for 4 months. RESULTS: Demonstrating successful target engagement, treatment with BPN15606 significantly decreased levels of Aß40 and Aß42 in the cortex and hippocampus; it had no effect on full-length APP or its C-terminal fragments in either 2 N or Ts65Dn mice. Importantly, the levels of total amyloid-ß were not impacted, pointing to BPN15606-mediated enhancement of processivity of γ-secretase. Additionally, BPN15606 rescued hyperactivation of Rab5, a protein responsible for regulating endosome function, and normalized neurotrophin signaling deficits. BPN15606 treatment also normalized the levels of synaptic proteins and tau phosphorylation, while reducing astrocytosis and microgliosis, and countering cognitive deficits. INTERPRETATION: Our findings point to the involvement of increased levels of Aß42 and/or Aß40 in contributing to several molecular and cognitive traits associated with DS-AD. They speak to increased dosage of the APP gene acting through heightened levels of Aß42 and/or Aß40 as supporting pathogenesis. These findings further the interest in the potential use of γ-secretase modulators for treating and possibly preventing AD in individuals with DS. ANN NEUROL 2024;96:390-404.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Síndrome de Down , Ratones Transgénicos , Fragmentos de Péptidos , Animales , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/genética , Síndrome de Down/metabolismo , Péptidos beta-Amiloides/metabolismo , Ratones , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Masculino
6.
Neurobiol Dis ; 195: 106502, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608784

RESUMEN

Synaptic changes are early manifestations of neuronal dysfunction in Huntington's disease (HD). However, the mechanisms by which mutant HTT protein impacts synaptogenesis and function are not well understood. Herein we explored HD pathogenesis in the BACHD mouse model by examining synaptogenesis and function in long term primary cortical cultures. At DIV14 (days in vitro), BACHD cortical neurons showed no difference from WT neurons in synaptogenesis as revealed by colocalization of a pre-synaptic (Synapsin I) and a post-synaptic (PSD95) marker. From DIV21 to DIV35, BACHD neurons showed progressively reduced colocalization of Synapsin I and PSD95 relative to WT neurons. The deficits were effectively rescued by treatment of BACHD neurons with BDNF. The recombinant apical domain of CCT1 (ApiCCT1) yielded a partial rescuing effect. BACHD neurons also showed culture age-related significant functional deficits as revealed by multielectrode arrays (MEAs). These deficits were prevented by BDNF, whereas ApiCCT1 showed a less potent effect. These findings are evidence that deficits in BACHD synapse and function can be replicated in vitro and that BDNF or a TRiC-inspired reagent can potentially be protective against these changes in BACHD neurons. Our findings support the use of cellular models to further explicate HD pathogenesis and potential treatments.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Corteza Cerebral , Modelos Animales de Enfermedad , Enfermedad de Huntington , Neuronas , Sinapsis , Animales , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Sinapsis/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Ratones , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Ratones Transgénicos , Células Cultivadas , Sinapsinas/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ratones Endogámicos C57BL
7.
Ann Neurol ; 94(2): 245-258, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37042072

RESUMEN

OBJECTIVE: The retromer complex plays an essential role in intracellular endosomal sorting. Deficits in the retromer complex are linked to enhanced Aß production. The levels of the components of the retromer complex are reported to be downregulated in Alzheimer disease (AD). Down syndrome (DS) shares neuropathological features with AD. Recent evidence points to dysregulation of the retromer complex in DS. The mechanisms underlying retromer deficits in DS and AD are poorly understood. METHODS: We measured the levels of retromer components in the frontal cortex of cases of DS-AD (AD in DS) as well as DS; the frontal cortex of a person partially trisomic (PT-DS) for human chromosome 21 (HSA21), whose genome had only the normal 2 copies of the APP gene, was also examined. We also analyzed these proteins in the Dp16 mouse model of DS. To further explore the molecular mechanism for changes in the retromer complex, we treated Dp16 mice with a γ-secretase modulator (GSM; 776890), a treatment that reduces the levels of Aß42 and Aß40. RESULTS: We found VPS26A, VPS26B, and VPS29, but not VPS35, were significantly reduced in both DS and DS-AD, but not in PT-DS. Downregulation of VPS26A, VPS26B, and VPS29 was recapitulated in the brains of old Dp16 mice (at 16 months of age) and required increased App gene dose. Significantly, GSM treatment completely prevented reductions of the retromer complex. INTERPRETATION: Our studies point to increased APP gene dose as a compromising retromer function in DS and suggest a causal role for Aß42 and Aß40. ANN NEUROL 2023;94:245-258.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Animales , Humanos , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/metabolismo , Endosomas/metabolismo , Transporte de Proteínas , Proteínas de Transporte Vesicular/genética
9.
Alzheimers Dement ; 19(5): 2095-2116, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36370135

RESUMEN

INTRODUCTION: Synaptic failure, a hallmark of Alzheimer's disease (AD), is correlated with reduced levels of synaptic proteins. Though people with Down syndrome (DS) are at markedly increased risk for AD (AD-DS), few studies have addressed synapse dysfunction. METHODS: Synaptic proteins were measured in the frontal cortex of DS, AD-DS, sporadic AD cases, and controls. The same proteins were examined in the Dp16 model of DS. RESULTS: A common subset of synaptic proteins were reduced in AD and AD-DS, but not in DS or a case of partial trisomy 21 lacking triplication of APP gene. Pointing to compromised synaptic function, the reductions in AD and AD-DS were correlated with reduced SNARE complexes. In Dp16 mice reductions in syntaxin 1A, SNAP25 and the SNARE complex recapitulated findings in AD-DS; reductions were impacted by both age and increased App gene dose. DISCUSSION: Synaptic phenotypes shared between AD-DS and AD point to shared pathogenetic mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Ratones , Animales , Síndrome de Down/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas SNARE
10.
Alzheimers Dement ; 18(6): 1203-1234, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34757693

RESUMEN

INTRODUCTION: People with Down syndrome (DS) are predisposed to Alzheimer's disease (AD). The amyloid hypothesis informs studies of AD. In AD-DS, but not sporadic AD, increased APP copy number is necessary, defining the APP gene dose hypothesis. Which amyloid precursor protein (APP) products contribute needs to be determined. METHODS: Brain levels of full-length protein (fl-hAPP), C-terminal fragments (hCTFs), and amyloid beta (Aß) peptides were measured in DS, AD-DS, non-demented controls (ND), and sporadic AD cases. The APP gene-dose hypothesis was evaluated in the Dp16 model. RESULTS: DS and AD-DS differed from ND and AD for all APP products. In AD-DS, Aß42 and Aß40 levels exceeded AD. APP products were increased in the Dp16 model; increased APP gene dose was necessary for loss of vulnerable neurons, tau pathology, and activation of astrocytes and microglia. DISCUSSION: Increases in APP products other than Aß distinguished AD-DS from AD. Deciphering AD-DS pathogenesis necessitates deciphering which APP products contribute and how.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Síndrome de Down , Dosificación de Gen , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Síndrome de Down/genética , Humanos , Ratones
11.
Alzheimers Dement ; 17(2): 271-292, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32975365

RESUMEN

OBJECTIVE: Recent clinical trials targeting amyloid beta (Aß) and tau in Alzheimer's disease (AD) have yet to demonstrate efficacy. Reviewing the hypotheses for AD pathogenesis and defining possible links between them may enhance insights into both upstream initiating events and downstream mechanisms, thereby promoting discovery of novel treatments. Evidence that in Down syndrome (DS), a population markedly predisposed to develop early onset AD, increased APP gene dose is necessary for both AD neuropathology and dementia points to normalization of the levels of the amyloid precursor protein (APP) and its products as a route to further define AD pathogenesis and discovering novel treatments. BACKGROUND: AD and DS share several characteristic manifestations. DS is caused by trisomy of whole or part of chromosome 21; this chromosome contains about 233 protein-coding genes, including APP. Recent evidence points to a defining role for increased expression of the gene for APP and for its 99 amino acid C-terminal fragment (C99, also known as ß-CTF) in dysregulating the endosomal/lysosomal system. The latter is critical for normal cellular function and in neurons for transmitting neurotrophic signals. NEW/UPDATED HYPOTHESIS: We hypothesize that the increase in APP gene dose in DS initiates a process in which increased levels of full-length APP (fl-APP) and its products, including ß-CTF and possibly Aß peptides (Aß42 and Aß40), drive AD pathogenesis through an endosome-dependent mechanism(s), which compromises transport of neurotrophic signals. To test this hypothesis, we carried out studies in the Ts65Dn mouse model of DS and examined the effects of Posiphen, an orally available small molecule shown in prior studies to reduce fl-APP. In vitro, Posiphen lowered fl-APP and its C-terminal fragments, reversed Rab5 hyperactivation and early endosome enlargement, and restored retrograde transport of neurotrophin signaling. In vivo, Posiphen treatment (50 mg/kg/d, 26 days, intraperitoneal [i.p.]) of Ts65Dn mice was well tolerated and demonstrated no adverse effects in behavior. Treatment resulted in normalization of the levels of fl-APP, C-terminal fragments and small reductions in Aß species, restoration to normal levels of Rab5 activity, reduced phosphorylated tau (p-tau), and reversed deficits in TrkB (tropomyosin receptor kinase B) activation and in the Akt (protein kinase B [PKB]), ERK (extracellular signal-regulated kinase), and CREB (cAMP response element-binding protein) signaling pathways. Remarkably, Posiphen treatment also restored the level of choline acetyltransferase protein to 2N levels. These findings support the APP gene dose hypothesis, point to the need for additional studies to explore the mechanisms by which increased APP gene expression acts to increase the risk for AD in DS, and to possible utility of treatments to normalize the levels of APP and its products for preventing AD in those with DS. MAJOR CHALLENGES FOR THE HYPOTHESIS: Important unanswered questions are: (1) When should one intervene in those with DS; (2) would an APP-based strategy have untoward consequences on possible adaptive changes induced by chronically increased APP gene dose; (3) do other genes present on chromosome 21, or on other chromosomes whose expression is dysregulated in DS, contribute to AD pathogenesis; and (4) can one model strategies that combine the use of an APP-based treatment with those directed at other AD phenotypes including p-tau and inflammation. LINKAGE TO OTHER MAJOR THEORIES: The APP gene dose hypothesis interfaces with the amyloid cascade hypothesis of AD as well as with the genetic and cell biological observations that support it. Moreover, upregulation of fl-APP protein and products may drive downstream events that dysregulate tau homeostasis and inflammatory responses that contribute to propagation of AD pathogenesis.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Inhibidores de la Colinesterasa/administración & dosificación , Síndrome de Down/genética , Endosomas , Fenotipo , Fisostigmina/análogos & derivados , Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Síndrome de Down/metabolismo , Endosomas/metabolismo , Endosomas/patología , Humanos , Ratones , Neuronas/metabolismo , Fosforilación , Fisostigmina/administración & dosificación
12.
Traffic ; 19(11): 840-853, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30120810

RESUMEN

The cytosolic chaperonin T-complex protein (TCP) 1-ring complex (TRiC) has been shown to exert neuroprotective effects on axonal transport through clearance of mutant Huntingtin (mHTT) in Huntington's disease. However, it is presently unknown if TRiC also has any effect on axonal transport in wild-type neurons. Here, we examined how TRiC impacted the retrograde axonal transport of brain-derived neurotrophic factor (BDNF). We found that expression of a single TRiC subunit significantly enhanced axonal transport of BDNF, leading to an increase in instantaneous velocity with a concomitant decrease in pauses for retrograde BDNF transport. The transport enhancing effect by TRiC was dependent on endogenous tau expression because no effect was seen in neurons from tau knockout mice. We showed that TRiC regulated the level of cyclin-dependent kinase 5 (CDK5)/p35 positively, contributing to TRiC-mediated tau phosphorylation (ptau). Expression of a single TRiC subunit increased the level of ptau while downregulation of the TRiC complex decreased ptau. We further demonstrated that TRiC-mediated increase in ptau induced detachment of tau from microtubules. Our study has thus revealed that TRiC-mediated increase in tau phosphorylation impacts retrograde axonal transport.


Asunto(s)
Transporte Axonal , Chaperonina con TCP-1/metabolismo , Proteínas tau/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células CHO , Células Cultivadas , Chaperonina con TCP-1/genética , Cricetinae , Cricetulus , Quinasa 5 Dependiente de la Ciclina/metabolismo , Células HEK293 , Humanos , Microtúbulos/metabolismo , Fosforilación , Ratas
13.
Bioorg Med Chem ; 28(22): 115734, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33007551

RESUMEN

The evolution of gamma-secretase modulators (GSMs) through the introduction of novel heterocycles with the goal of aligning activity for reducing the levels of Aß42 and properties consistent with a drug-like molecule are described. The insertion of a methoxypyridine motif within the tetracyclic scaffold provided compounds with improved activity for arresting Aß42 production as well as improved properties, including solubility. In vivo pharmacokinetic analysis demonstrated that several compounds within the novel series were capable of crossing the BBB and accessing the therapeutic target. Treatment with methoxypyridine-derived compound 64 reduced Aß42 levels in the plasma of J20 mice, in addition to reducing Aß42 levels in the plasma and brain of Tg2576 mice.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Piridinas/farmacología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/análisis , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/biosíntesis , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Estructura Molecular , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad
14.
J Neurosci ; 38(14): 3394-3413, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29483280

RESUMEN

Nerve growth factor (NGF) exerts multiple functions on target neurons throughout development. The recent discovery of a point mutation leading to a change from arginine to tryptophan at residue 100 in the mature NGFß sequence (NGFR100W) in patients with hereditary sensory and autonomic neuropathy type V (HSAN V) made it possible to distinguish the signaling mechanisms that lead to two functionally different outcomes of NGF: trophic versus nociceptive. We performed extensive biochemical, cellular, and live-imaging experiments to examine the binding and signaling properties of NGFR100W Our results show that, similar to the wild-type NGF (wtNGF), the naturally occurring NGFR100W mutant was capable of binding to and activating the TrkA receptor and its downstream signaling pathways to support neuronal survival and differentiation. However, NGFR100W failed to bind and stimulate the 75 kDa neurotrophic factor receptor (p75NTR)-mediated signaling cascades (i.e., the RhoA-Cofilin pathway). Intraplantar injection of NGFR100W into adult rats induced neither TrkA-mediated thermal nor mechanical acute hyperalgesia, but retained the ability to induce chronic hyperalgesia based on agonism for TrkA signaling. Together, our studies provide evidence that NGFR100W retains trophic support capability through TrkA and one aspect of its nociceptive signaling, but fails to engage p75NTR signaling pathways. Our findings suggest that wtNGF acts via TrkA to regulate the delayed priming of nociceptive responses. The integration of both TrkA and p75NTR signaling thus appears to regulate neuroplastic effects of NGF in peripheral nociception.SIGNIFICANCE STATEMENT In the present study, we characterized the naturally occurring nerve growth factor NGFR100W mutant that is associated with hereditary sensory and autonomic neuropathy type V. We have demonstrated for the first time that NGFR100W retains trophic support capability through TrkA, but fails to engage p75NTR signaling pathways. Furthermore, after intraplantar injection into adult rats, NGFR100W induced neither thermal nor mechanical acute hyperalgesia, but retained the ability to induce chronic hyperalgesia. We have also provided evidence that the integration of both TrkA- and p75NTR-mediated signaling appears to regulate neuroplastic effects of NGF in peripheral nociception. Our study with NGFR100W suggests that it is possible to uncouple trophic effect from nociceptive function, both induced by wild-type NGF.


Asunto(s)
Neuropatías Hereditarias Sensoriales y Autónomas/genética , Mutación Missense , Factor de Crecimiento Nervioso/genética , Nocicepción , Receptor trkA/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Células 3T3 , Animales , Células Cultivadas , Células HEK293 , Neuropatías Hereditarias Sensoriales y Autónomas/metabolismo , Neuropatías Hereditarias Sensoriales y Autónomas/fisiopatología , Humanos , Masculino , Ratones , Factor de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso , Células PC12 , Unión Proteica , Ratas , Ratas Sprague-Dawley , Receptores de Factores de Crecimiento , Transducción de Señal
15.
Proc Natl Acad Sci U S A ; 113(38): E5655-64, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27601642

RESUMEN

Corticostriatal atrophy is a cardinal manifestation of Huntington's disease (HD). However, the mechanism(s) by which mutant huntingtin (mHTT) protein contributes to the degeneration of the corticostriatal circuit is not well understood. We recreated the corticostriatal circuit in microfluidic chambers, pairing cortical and striatal neurons from the BACHD model of HD and its WT control. There were reduced synaptic connectivity and atrophy of striatal neurons in cultures in which BACHD cortical and striatal neurons were paired. However, these changes were prevented if WT cortical neurons were paired with BACHD striatal neurons; synthesis and release of brain-derived neurotrophic factor (BDNF) from WT cortical axons were responsible. Consistent with these findings, there was a marked reduction in anterograde transport of BDNF in BACHD cortical neurons. Subunits of the cytosolic chaperonin T-complex 1 (TCP-1) ring complex (TRiC or CCT for chaperonin containing TCP-1) have been shown to reduce mHTT levels. Both CCT3 and the apical domain of CCT1 (ApiCCT1) decreased the level of mHTT in BACHD cortical neurons. In cortical axons, they normalized anterograde BDNF transport, restored retrograde BDNF transport, and normalized lysosomal transport. Importantly, treating BACHD cortical neurons with ApiCCT1 prevented BACHD striatal neuronal atrophy by enhancing release of BDNF that subsequently acts through tyrosine receptor kinase B (TrkB) receptor on striatal neurons. Our findings are evidence that TRiC reagent-mediated reductions in mHTT enhanced BDNF delivery to restore the trophic status of BACHD striatal neurons.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Chaperonina con TCP-1/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Degeneraciones Espinocerebelosas/genética , Animales , Atrofia/genética , Atrofia/metabolismo , Atrofia/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Chaperonina con TCP-1/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/patología , Dispositivos Laboratorio en un Chip , Ratones , Mutación , Neuronas/metabolismo , Neuronas/patología , Receptor trkB/genética , Receptor trkB/metabolismo , Degeneraciones Espinocerebelosas/tratamiento farmacológico , Degeneraciones Espinocerebelosas/patología
16.
PLoS Genet ; 12(5): e1006033, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27195491

RESUMEN

Type 2 diabetes (T2D) is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic ß-cell dysfunction. Reduced mitochondrial function is thought to be central to ß-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in ß-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21). To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D ß-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D ß-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their ß-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of ß-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D ß-cells where we had little knowledge of which changes cause ß-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to ß-cell mitochondrial dysfunction in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Síndrome de Down/genética , Insulina/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Musculares/genética , Adenosina Trifosfato/metabolismo , Aneuploidia , Animales , Proteínas de Unión al Calcio , Cromosomas Humanos Par 21/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Síndrome de Down/metabolismo , Síndrome de Down/patología , Regulación de la Expresión Génica , Glucosa/metabolismo , Humanos , Hiperglucemia/genética , Hiperglucemia/metabolismo , Hiperglucemia/patología , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Mitocondrias/genética , Mitocondrias/patología , Proteínas Musculares/metabolismo , Biosíntesis de Proteínas/genética
17.
Neurobiol Dis ; 103: 1-10, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28342823

RESUMEN

Down syndrome (DS), trisomy 21, is caused by increased dose of genes present on human chromosome 21 (HSA21). The gene-dose hypothesis argues that a change in the dose of individual genes or regulatory sequences on HSA21 is necessary for creating DS-related phenotypes, including cognitive impairment. We focused on a possible role for Kcnj6, the gene encoding Kir3.2 (Girk2) subunits of a G-protein-coupled inwardly-rectifying potassium channel. This gene resides on a segment of mouse Chromosome 16 that is present in one extra copy in the genome of the Ts65Dn mouse, a well-studied genetic model of DS. Kir3.2 subunit-containing potassium channels serve as effectors for a number of postsynaptic metabotropic receptors including GABAB receptors. Several studies raise the possibility that increased Kcnj6 dose contributes to synaptic and cognitive abnormalities in DS. To assess directly a role for Kcnj6 gene dose in cognitive deficits in DS, we produced Ts65Dn mice that harbor only 2 copies of Kcnj6 (Ts65Dn:Kcnj6++- mice). The reduction in Kcnj6 gene dose restored to normal the hippocampal level of Kir3.2. Long-term memory, examined in the novel object recognition test with the retention period of 24h, was improved to the level observed in the normosomic littermate control mice (2N:Kcnj6++). Significantly, both short-term and long-term potentiation (STP and LTP) was improved to control levels in the dentate gyrus (DG) of the Ts65Dn:Kcnj6++- mouse. In view of the ability of fluoxetine to suppress Kir3.2 channels, we asked if fluoxetine-treated DG slices of Ts65Dn:Kcnj6+++ mice would rescue synaptic plasticity. Fluoxetine increased STP and LTP to control levels. These results are evidence that increased Kcnj6 gene dose is necessary for synaptic and cognitive dysfunction in the Ts65Dn mouse model of DS. Strategies aimed at pharmacologically reducing channel function should be explored for enhancing cognition in DS.


Asunto(s)
Giro Dentado/metabolismo , Síndrome de Down/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/biosíntesis , Dosificación de Gen/fisiología , Locomoción/fisiología , Plasticidad Neuronal/fisiología , Animales , Giro Dentado/patología , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/patología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos
18.
Hum Mol Genet ; 24(22): 6540-51, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26374847

RESUMEN

Down syndrome (DS), caused by trisomy 21, is the most common chromosomal disorder associated with developmental cognitive deficits. Despite intensive efforts, the genetic mechanisms underlying developmental cognitive deficits remain poorly understood, and no treatment has been proven effective. The previous mouse-based experiments suggest that the so-called Down syndrome critical region of human chromosome 21 is an important region for this phenotype, which is demarcated by Setd4/Cbr1 and Fam3b/Mx2. We first confirmed the importance of the Cbr1-Fam3b region using compound mutant mice, which carry a duplication spanning the entire human chromosome 21 orthologous region on mouse chromosome 16 [Dp(16)1Yey] and Ms1Rhr. By dividing the Setd4-Mx2 region into complementary Setd4-Kcnj6 and Kcnj15-Mx2 intervals, we started an unbiased dissection through generating and analyzing Dp(16)1Yey/Df(16Setd4-Kcnj6)Yey and Dp(16)1Yey/Df(16Kcnj15-Mx2)Yey mice. Surprisingly, the Dp(16)1Yey-associated cognitive phenotypes were not rescued by either deletion in the compound mutants, suggesting the possible presence of at least one causative gene in each of the two regions. The partial rescue by a Dyrk1a mutation in a compound mutant carrying Dp(16)1Yey and the Dyrk1a mutation confirmed the causative role of Dyrk1a, whereas the absence of a similar rescue by Df(16Dyrk1a-Kcnj6)Yey in Dp(16)1Yey/Df(16Dyrk1a-Kcnj6)Yey mice demonstrated the importance of Kcnj6. Our results revealed the high levels of complexities of gene actions and interactions associated with the Setd4/Cbr1-Fam3b/Mx2 region as well as their relationship with developmental cognitive deficits in DS.


Asunto(s)
Trastornos del Conocimiento/genética , Síndrome de Down/genética , Animales , Deleción Cromosómica , Modelos Animales de Enfermedad , Estudios de Asociación Genética , Humanos , Ratones , Ratones Mutantes , Eliminación de Secuencia
19.
J Pharmacol Exp Ther ; 362(1): 31-44, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28416568

RESUMEN

Alzheimer's disease (AD) is characterized neuropathologically by an abundance of 1) neuritic plaques, which are primarily composed of a fibrillar 42-amino-acid amyloid-ß peptide (Aß), as well as 2) neurofibrillary tangles composed of aggregates of hyperphosporylated tau. Elevations in the concentrations of the Aß42 peptide in the brain, as a result of either increased production or decreased clearance, are postulated to initiate and drive the AD pathologic process. We initially introduced a novel class of bridged aromatics referred tγ-secretase modulatoro as γ-secretase modulators that inhibited the production of the Aß42 peptide and to a lesser degree the Aß40 peptide while concomitantly increasing the production of the carboxyl-truncated Aß38 and Aß37 peptides. These modulators potently lower Aß42 levels without inhibiting the γ-secretase-mediated proteolysis of Notch or causing accumulation of carboxyl-terminal fragments of APP. In this study, we report a large number of pharmacological studies and early assessment of toxicology characterizing a highly potent γ-secretase modulator (GSM), (S)-N-(1-(4-fluorophenyl)ethyl)-6-(6-methoxy-5-(4-methyl-1H-imidazol-1-yl)pyridin-2-yl)-4-methylpyridazin-3-amine (BPN-15606). BPN-15606 displayed the ability to significantly lower Aß42 levels in the central nervous system of rats and mice at doses as low as 5-10 mg/kg, significantly reduce Aß neuritic plaque load in an AD transgenic mouse model, and significantly reduce levels of insoluble Aß42 and pThr181 tau in a three-dimensional human neural cell culture model. Results from repeat-dose toxicity studies in rats and dose escalation/repeat-dose toxicity studies in nonhuman primates have designated this GSM for 28-day Investigational New Drug-enabling good laboratory practice studies and positioned it as a candidate for human clinical trials.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Péptidos beta-Amiloides/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/toxicidad , Fragmentos de Péptidos/antagonistas & inhibidores , Fenetilaminas/farmacología , Fenetilaminas/toxicidad , Piridazinas/farmacología , Piridazinas/toxicidad , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Células Cultivadas , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacocinética , Humanos , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Placa Amiloide/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Proteínas tau/metabolismo
20.
Hippocampus ; 26(12): 1641-1654, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27701794

RESUMEN

It has been suggested that increased GABAergic innervation in the hippocampus plays a significant role in cognitive dysfunction in Down syndrome (DS). Bolstering this notion, are studies linking hyper-innervation of the dentate gyrus (DG) by GABAergic terminals to failure in LTP induction in the Ts65Dn mouse model of DS. Here, we used extensive morphometrical methods to assess the status of GABAergic interneurons in the DG of young and old Ts65Dn mice and their 2N controls. We detected an age-dependent increase in GABAergic innervation of dentate granule cells (DGCs) in Ts65Dn mice. The primary source of GABAergic terminals to DGCs somata is basket cells (BCs). For this reason, we assessed the status of these cells and found a significant increase in the number of BCs in Ts65Dn mice compared with controls. Then we aimed to identify the gene/s whose overexpression could be linked to increased number of BCs in Ts65Dn and found that deleting the third copy of App gene in Ts65Dn mice led to normalization of the number of BCs in these mice. Our data suggest that App overexpression plays a major role in the pathophysiology of GABAergic hyperinnervation of the DG in Ts65Dn mice. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Envejecimiento/patología , Precursor de Proteína beta-Amiloide/metabolismo , Giro Dentado/patología , Síndrome de Down/patología , Neuronas GABAérgicas/patología , Interneuronas/patología , Envejecimiento/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Quinasa 5 Dependiente de la Ciclina/metabolismo , Giro Dentado/metabolismo , Modelos Animales de Enfermedad , Síndrome de Down/metabolismo , Neuronas GABAérgicas/metabolismo , Inmunohistoquímica , Interneuronas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Parvalbúminas/metabolismo , Receptores de Ácido Kaínico/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA