Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Amyloid ; 30(4): 424-433, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37431668

RESUMEN

BACKGROUND: Systemic AA amyloidosis is a world-wide occurring protein misfolding disease in humans and animals that arises from the formation of amyloid fibrils from serum amyloid A (SAA) protein and their deposition in multiple organs. OBJECTIVE: To identify new agents that prevent fibril formation from SAA protein and to determine their mode of action. MATERIALS AND METHODS: We used a cell model for the formation of amyloid deposits from SAA protein to screen a library of peptides and small proteins, which were purified from human hemofiltrate. To clarify the inhibitory mechanism the obtained inhibitors were characterised in cell-free fibril formation assays and other biochemical methods. RESULTS: We identified lysozyme as an inhibitor of SAA fibril formation. Lysozyme antagonised fibril formation both in the cell model as well as in cell-free fibril formation assays. The protein binds SAA with a dissociation constant of 16.5 ± 0.6 µM, while the binding site on SAA is formed by segments of positively charged amino acids. CONCLUSION: Our data imply that lysozyme acts in a chaperone-like fashion and prevents the aggregation of SAA protein through direct, physical interactions.


Asunto(s)
Amiloidosis , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas , Animales , Humanos , Proteína Amiloide A Sérica/metabolismo , Muramidasa , Amiloidosis/metabolismo , Amiloide/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA