Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 19(7): e0305258, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38976698

RESUMEN

Understanding a person's perceived quality of sleep is an important problem, but hard due to its poor definition and high intra- as well as inter-individual variation. In the short term, sleep quality has an established impact on cognitive function during the following day as well as on fatigue. In the long term, good quality sleep is essential for mental and physical health and contributes to quality of life. Despite the need to better understand sleep quality as an early indicator for sleep disorders, perceived sleep quality has been rarely modeled for multiple consecutive days using biosignals. In this paper, we present novel insights on the association of cardiac activity and perceived sleep quality using an interpretable modeling approach utilizing the publicly available intensive-longitudinal study M2Sleep. Our method takes as input signals from commodity wearable devices, including motion and blood volume pulses. Despite processing only simple and clearly interpretable features, we achieve an accuracy of up to 70% with an AUC of 0.76 and reduce the error by up to 36% compared to related work. We further argue that collected biosignals and sleep quality labels should be normalized per-participant to enable a medically insightful analysis. Coupled with explainable models, this allows for the interpretations of effects on perceived sleep quality. Analysis revealed that besides higher skin temperature and sufficient sleep duration, especially higher average heart rate while awake and lower minimal activity of the parasympathetic and sympathetic nervous system while asleep increased the chances of higher sleep quality.


Asunto(s)
Calidad del Sueño , Humanos , Masculino , Femenino , Adulto , Frecuencia Cardíaca/fisiología , Sueño/fisiología , Estudios Longitudinales , Persona de Mediana Edad , Percepción/fisiología
2.
iScience ; 27(2): 108965, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38362266

RESUMEN

Fatigue is the most common symptom among multiple sclerosis (MS) patients and severely affects the quality of life. We investigate how perceived fatigue can be predicted using biomarkers collected from an arm-worn wearable sensor for MS patients (n = 51) and a healthy control group (n = 23) at an unprecedented time resolution of more than five times per day. On average, during our two-week study, participants reported their level of fatigue 51 times totaling more than 3,700 data points. Using interpretable generalized additive models, we find that increased physical activity, heart rate, sympathetic activity, and parasympathetic activity while awake and asleep relate to perceived fatigue throughout the day-partly affected by dysfunction of the ANS. We believe our analysis opens up new research opportunities for fine-grained modeling of perceived fatigue based on passively collected physiological signals using wearables-for MS patients and healthy controls alike.

3.
NPJ Digit Med ; 7(1): 64, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467710

RESUMEN

Multiple sclerosis (MS) is a neurological disease of the central nervous system that is the leading cause of non-traumatic disability in young adults. Clinical laboratory tests and neuroimaging studies are the standard methods to diagnose and monitor MS. However, due to infrequent clinic visits, it is fundamental to identify remote and frequent approaches for monitoring MS, which enable timely diagnosis, early access to treatment, and slowing down disease progression. In this work, we investigate the most reliable, clinically useful, and available features derived from mobile and wearable devices as well as their ability to distinguish people with MS (PwMS) from healthy controls, recognize MS disability and fatigue levels. To this end, we formalize clinical knowledge and derive behavioral markers to characterize MS. We evaluate our approach on a dataset we collected from 55 PwMS and 24 healthy controls for a total of 489 days conducted in free-living conditions. The dataset contains wearable sensor data - e.g., heart rate - collected using an arm-worn device, smartphone data - e.g., phone locks - collected through a mobile application, patient health records - e.g., MS type - obtained from the hospital, and self-reports - e.g., fatigue level - collected using validated questionnaires administered via the mobile application. Our results demonstrate the feasibility of using features derived from mobile and wearable sensors to monitor MS. Our findings open up opportunities for continuous monitoring of MS in free-living conditions and can be used to evaluate and guide the effectiveness of treatments, manage the disease, and identify participants for clinical trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA